Resiliencia de Abies durangensis Martínez a sequías en el suroeste de Durango mediante proxies dendroecológicos

  • José Alexis Martínez-Rivas Universidad Juárez del Estado de Durango https://orcid.org/0000-0002-7799-4168
  • Andrea Cecilia Acosta-Hernández Universidad Juárez del Estado de Durango
  • Eduardo Daniel Vivar-Vivar Universidad Juárez del Estado de Durango https://orcid.org/0000-0002-2052-0404
  • Nancy Silva-Avila Universidad Juárez del Estado de Durango
Palabras clave: Crecimiento radial, Resiliencia, Sequía, Adaptación climática, Sensibilidad climática

Resumen

Los ecosistemas forestales son esenciales para el almacenamiento de carbono y la conservación de la biodiversidad, pero se enfrentan a actividades humanas y presiones de procesos naturales que pueden alterar su estructura y crecimiento. En este estudio, examinamos la respuesta del crecimiento radial a las condiciones climáticas, incluidas las sequías, y evaluamos la resiliencia de los árboles de Abies durangensis Martinez en la Sierra Madre Occidental de Durango, México. Analizamos cuarenta y dos núcleos de crecimiento de veintiún árboles, estudiando los anillos de crecimiento anual para correlacionar los datos climáticos y de sequía con el crecimiento radial. Además, calculamos índices de resiliencia. Nuestros resultados revelaron una correlación positiva entre el crecimiento y las precipitaciones a principios de la estación de crecimiento. Sin embargo, las temperaturas máximas y mínimas, junto con las sequías prolongadas, afectaron negativamente al crecimiento radial. A pesar de esta vulnerabilidad, los índices de resiliencia indicaron una resistencia moderada, observándose una alta resiliencia tras los eventos de sequía. Esto sugiere que A. durangensis, aunque vulnerable a condiciones climáticas extremas, tiene una notable capacidad de adaptación a variaciones climáticas futuras.

Citas

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/https://doi.org/10.1007/s11356-022-19718-6
Acosta-Hernández, A. C., Pompa-García, M., & Camarero, J. J. (2017). An Updated Review of Dendrochronological Investigations in Mexico, a Megadiverse Country with a High Potential for Tree-Ring Sciences. Forests 2017, Vol. 8, Page 160, 8(5), 160. https://doi.org/https://doi.org/10.3390/f8050160
Ameray, A., Bergeron, Y., Valeria, O., & et al. (2021). Forest Carbon Management: a Review of Silvicultural Practices and Management Strategies Across Boreal, Temperate and Tropical Forests. Current Forestry Reports , 7, 245–266. https://doi.org/https://doi.org/10.1007/s40725-021-00151-w
Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G., & Tuttle, S. E. (2019). Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 116(28), 14071–14076. https://doi.org/https://doi.org/10.1073/pnas.1904747116
Babst, F., Bodesheim, P., Charney, N., Friend, A. D., Girardin, M. P., Klesse, S., Moore, D. J. P., Seftigen, K., Björklund, J., Bouriaud, O., Dawson, A., DeRose, R. J., Dietze, M. C., Eckes, A. H., Enquist, B., Frank, D. C., Mahecha, M. D., Poulter, B., Record, S., … Evans, M. E. K. (2018). When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 197, 1–20. https://doi.org/https://doi.org/10.1016/j.quascirev.2018.07.009
Beguería, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10), 3001–3023. https://doi.org/https://doi.org/10.1002/joc.3887
Belokopytova, L. V., Zhirnova, D. F., Krutovsky, K. V., Mapitov, N. B., Vaganov, E. A., & Babushkina, E. A. (2022). Species-and Age-Specific Growth Reactions to Extreme Droughts of the Keystone Tree Species across Forest-Steppe and Sub-Taiga Habitats of South Siberia. Forests, 13(7), 1027. https://doi.org/https://doi.org/10.3390/f13071027
Bernal, A. A., Kane, J. M., Knapp, E. E., & Zald, H. S. J. (2023). Tree resistance to drought and bark beetle-associated mortality following thinning and prescribed fire treatments. Forest Ecology and Management, 530, 120758. https://doi.org/https://doi.org/10.1016/j.foreco.2022.120758
Bunn, A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26(2), 115–124. https://doi.org/https://doi.org/10.1016/j.dendro.2008.01.002
Cabral-Alemán, C., Villanueva-Díaz, J., Quiñonez-Barraza, G., & Gómez-Guerrero, A. (2022). Resilience of Pinus durangensis Martínez in Extreme Drought Periods: Vertical and Horizontal Response of Tree Rings. Atmosphere 2023, Vol. 14, Page 43, 14(1), 43. https://doi.org/https://doi.org/10.3390/atmos14010043
Camarero, J. J., Gazol, A., Linares, J. C., Fajardo, A., Colangelo, M., Valeriano, C., Sánchez-Salguero, R., Sangüesa-Barreda, G., Granda, E., & Gimeno, T. E. (2021). Differences in temperature sensitivity and drought recovery between natural stands and plantations of conifers are species-specific. Science of The Total Environment, 796, 148930. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148930
Carlón Allende, T., Villanueva Díaz, J., Soto Castro, G., Mendoza, M. E., & Macías, J. L. (2021). Tree rings as indicators of climatic variation in the Trans-Mexican Volcanic Belt, central Mexico. Ecological Indicators, 120, 106920. https://doi.org/https://doi.org/10.1016/j.ecolind.2020.106920
Castagneri, D., Vacchiano, G., Hacket-Pain, A., DeRose, R. J., Klein, T., & Bottero, A. (2022). Meta-analysis Reveals Different Competition Effects on Tree Growth Resistance and Resilience to Drought. Ecosystems, 25(1), 30–43. https://doi.org/https://doi.org/10.1007/s10021-021-00638-4
Castruita-Esparza, L. U., Silva, L. C. R., Gómez-Guerrero, A., Villanueva-Díaz, J., Correa-Díaz, A., & Horwath, W. R. (2019). Coping With Extreme Events: Growth and Water-Use Efficiency of Trees in Western Mexico During the Driest and Wettest Periods of the Past One Hundred Sixty Years. Journal of Geophysical Research: Biogeosciences, 124(11), 3419–3431. https://doi.org/https://doi.org/10.1029/2019JG005294
Cerano Paredes, J., Villanueva Díaz, J., David Valdez Cepeda, R., Méndez González, J., & Constante García, V. (2011). SEQUÍAS RECONSTRUIDAS EN LOS ÚLTIMOS 600 AÑOS PARA EL NORESTE DE MÉXICO. Revista Mexicana de Ciencias Agrícolas, 2, 235–249. https://www.scielo.org.mx/pdf/remexca/v2nspe2/v2spe2a6.pdf
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (2016). Oyamel norteño (Abies durangensis). EncicloVida. https://enciclovida.mx/especies/155240-abies-durangensis
Correa-Díaz, A., Villanueva-Díaz, J., Gómez-Guerrero, A., Martínez-Bautista, H., Castruita-Esparza, L. U., Horwath, W. R., & Silva, L. C. R. (2023). A comprehensive resilience assessment of Mexican tree species and their relationship with drought events over the last century. Global Change Biology, 29(13), 3652–3666. https://doi.org/https://doi.org/10.1111/gcb.16705
Domínguez, J. (2016). Revisión histórica de las sequías en México: de la explicación divina a la incorporación de la ciencia. Tecnología y Ciencias Del Agua, 7(5), 77–93. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222016000500077&lng=es&nrm=iso&tlng=es
García-Trujillo, Z. H. M. K., Torres-Pérez, J. A., Cázares-Morán, M. A., Avitia-Deras, A., Claudia Palafox-Barcenas, & Ku-De Dios, E. N. (2023). Percepción social de las reservas naturales en Ejidos de Quintana Roo: Social perception of natural reserves in Ejidos de Quintana Roo. Brazilian Journal of Animal and Environmental Research, 6(1), 126–139. https://doi.org/https://doi.org/10.34188/bjaerv6n1-012
Gazol, A., Camarero, J. J., Anderegg, W. R. L., & Vicente-Serrano, S. M. (2017). Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 26(2), 166–176. https://doi.org/https://doi.org/10.1111/geb.12526
Girona, M. M., Aakala, T., Aquilué, N., Bélisle, A. C., Chaste, E., Danneyrolles, V., Díaz-Yáñez, O., D’Orangeville, L., Grosbois, G., Hester, A., Kim, S., Kulha, N., Martin, M., Moussaoui, L., Pappas, C., Portier, J., Teitelbaum, S., Tremblay, J. P., Svensson, J., … Gauthier, S. (2023). Challenges for the Sustainable Management of the Boreal Forest Under Climate Change. Advances in Global Change Research, 74, 773–837. https://doi.org/https://doi.org/10.1007/978-3-031-15988-6_31
González-Elizondo, M. S., González-Elizondo, M., Tena-Flores, J. A., Ruacho-González, L., & López-Enríquez, I. L. (2012). VEGETACIÓN DE LA SIERRA MADRE OCCIDENTAL, MÉXICO: UNA SÍNTESIS. Acta Botanica Mexicana, 100, 351–403. https://www.scielo.org.mx/pdf/abm/n100/n100a12.pdf
Grantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., Beyer, H. L., Schuster, R., Walston, J., Ray, J. C., Robinson, J. G., Callow, M., Clements, T., Costa, H. M., DeGemmis, A., Elsen, P. R., Ervin, J., Franco, P., Goldman, E., Goetz, S., Hansen, A., … Watson, J. E. M. (2020). Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications 2020 11:1, 11(1), 1–10. https://doi.org/https://doi.org/10.1038/s41467-020-19493-3 }
Hadad, M. A., Roig Juñent, F. A., Boninsegna, J. A., & Patón, D. (2015). Age effects on the climatic signal in Araucaria araucana from xeric sites in Patagonia, Argentina. Plant Ecology & Diversity, 8(3), 343–351. https://doi.org/https://doi.org/10.1080/17550874.2014.980350
Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 2020 7:1, 7(1), 1–18. https://doi.org/https://doi.org/10.1038/s41597-020-0453-3
Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., Mcdowell, N. G., Powers, J. S., Pugh, T. A. M., Ruthrof, K. X., & Allen, C. D. (2022). Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annual Review of Plant Biology, 73(Volume 73, 2022), 673–702. https://doi.org/https://doi.org/10.1146/annurev-arplant-102820-012804
Holmes, R. L. (1983). Computer-Assisted Quality Control in Tree-Ring Dating and Measurement Item Type Article COMPUTER-ASSISTED QUALITY CONTROL IN TREE-RING DATING AND MEASUREMENT. TREE-RING BULLETIN, 43. http://hdl.handle.net/10150/261223
Ingrisch, J., & Bahn, M. (2018). Towards a Comparable Quantification of Resilience. Trends in Ecology and Evolution, 33(4), 251–259. https://doi.org/https://doi.org/10.1016/j.tree.2018.01.013
Jiao, L., Jiang, Y., Wang, M., Zhang, W., & Zhang, Y. (2017). Age-Effect Radial Growth Responses of Picea schrenkiana to Climate Change in the Eastern Tianshan Mountains, Northwest China. Forests 2017, Vol. 8, Page 294, 8(9), 294. https://doi.org/https://doi.org/10.3390/f8090294
Kannenberg, S. A., Schwalm, C. R., & Anderegg, W. R. L. (2020). Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 23(5), 891–901. https://doi.org/https://doi.org/10.1111/ele.13485
Linares, J. C., Taïqui, L., Sangüesa-Barreda, G., Seco, J. I., & Camarero, J. J. (2013). Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia, 31(2), 88–96. https://doi.org/https://doi.org/10.1016/j.dendro.2012.08.003
Lloret, F., Keeling, E. G., & Sala, A. (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120(12), 1909–1920. https://doi.org/https://doi.org/10.1111/j.1600-0706.2011.19372.x
Locosselli, G. M., Cintra, B. B. L., Ferreira, L. S., da Silva-Luz, C. L., Miyahara, A. A. L., Brienen, R. J. W., Gloor, E., Boom, A., Grandis, A., & Buckeridge, M. S. (2024). Stress-tolerant trees for resilient cities: Tree-ring analysis reveals species suitable for a future climate. Urban Climate, 55, 101964. https://doi.org/https://doi.org/10.1016/j.uclim.2024.101964
Marcotti, E., Amoroso, M. M., Rodríguez-Catón, M., Vega, L., Srur, A. M., & Villalba, R. (2021). Growth resilience of Austrocedrus chilensis to drought along a precipitation gradient in Patagonia, Argentina. Forest Ecology and Management, 496, 119388. https://doi.org/https://doi.org/10.1016/j.foreco.2021.119388
Martínez-Rivas, J. A., Vargas-Larreta, B., López-Martínez, J. O., Aguirre-Calderón, C. G., Hernández, F. J., & Ángeles-Pérez, G. (2023). Understanding Soil Respiration Dynamics in Temperate Forests in Northwestern Mexico. Forests 2023, Vol. 14, Page 1763, 14(9), 1763. https://doi.org/https://doi.org/10.3390/f14091763
McDowell, N. G., Sapes, G., Pivovaroff, A., Adams, H. D., Allen, C. D., Anderegg, W. R. L., Arend, M., Breshears, D. D., Brodribb, T., Choat, B., Cochard, H., De Cáceres, M., De Kauwe, M. G., Grossiord, C., Hammond, W. M., Hartmann, H., Hoch, G., Kahmen, A., Klein, T., … Xu, C. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment 2022 3:5, 3(5), 294–308. https://doi.org/https://doi.org/10.1038/s43017-022-00272-1
Mikusiński, G., Orlikowska, E. H., Bubnicki, J. W., Jonsson, B. G., & Svensson, J. (2021). Strengthening the Network of High Conservation Value Forests in Boreal Landscapes. Frontiers in Ecology and Evolution, 8, 595730. https://doi.org/https://doi.org/10.3389/fevo.2020.595730
Muller-Landau, H. C., Cushman, K. C., Arroyo, E. E., Martinez Cano, I., Anderson-Teixeira, K. J., & Backiel, B. (2021). Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. New Phytologist, 229(6), 3065–3087. https://doi.org/https://doi.org/10.1111/nph.17084
Neuwirth, B., Schweingruber, F. H., & Winiger, M. (2007). Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia, 24(2–3), 79–89. https://doi.org/https://doi.org/10.1016/j.dendro.2006.05.004
O’Hara, K. L., Cox, L. E., Nikolaeva, S., Bauer, J. J., & Hedges, R. (2017). Regeneration Dynamics of Coast Redwood, a Sprouting Conifer Species: A Review with Implications for Management and Restoration. Forests 2017, Vol. 8, Page 144, 8(5), 144. https://doi.org/https://doi.org/10.3390/f8050144
Piraino, S., Molina, J. A., Hadad, M. A., & Juñent, F. A. R. (2022). Resilience capacity of Araucaria araucana to extreme drought events. Dendrochronologia, 75, 125996. https://doi.org/https://doi.org/10.1016/j.dendro.2022.125996
Pompa-García, M., Sánchez-Salguero, R., & Camarero, J. J. (2017). Observed and projected impacts of climate on radial growth of three endangered conifers in northern Mexico indicate high vulnerability of drought-sensitive species from mesic habitats. Dendrochronologia, 45, 145–155. https://doi.org/https://doi.org/10.1016/j.dendro.2017.08.006
R. Core Team. (2018). R: a Language and Environment for Statistical Computing. https://www.r-project.org/
R: The R Project for Statistical Computing. (2018). https://www.r-project.org/
Rydval, M., Björklund, J., von Arx, G., Begović, K., Lexa, M., Nogueira, J., Schurman, J. S., & Jiang, Y. (2024). Ultra-high-resolution reflected-light imaging for dendrochronology. Dendrochronologia, 83, 126160. https://doi.org/https://doi.org/10.1016/j.dendro.2023.126160
Schwarz, J., Skiadaresis, G., Kohler, M., Kunz, J., Schnabel, F., Vitali, V., & Bauhus, J. (2020). Quantifying Growth Responses of Trees to Drought—a Critique of Commonly Used Resilience Indices and Recommendations for Future Studies. Current Forestry Reports, 6(3), 185–200. https://doi.org/https://doi.org/10.1007/s40725-020-00119-2
Song, Y., Sterck, F., Sass-Klaassen, U., Li, C., & Poorter, L. (2022). Growth resilience of conifer species decreases with early, long-lasting and intense droughts but cannot be explained by hydraulic traits. Journal of Ecology, 110(9), 2088–2104. https://doi.org/https://doi.org/10.1111/1365-2745.13931
Stahle, D. W., Cook, E. R., Burnette, D. J., Villanueva, J., Cerano, J., Burns, J. N., Griffin, D., Cook, B. I., Acuña, R., Torbenson, M. C. A., Szejner, P., & Howard, I. M. (2016). The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quaternary Science Reviews, 149, 34–60. https://doi.org/https://doi.org/10.1016/j.quascirev.2016.06.018
Trouet, V., & Van Oldenborgh, G. J. (2013). KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Https://Doi.Org/10.3959/1536-1098-69.1.3, 69(1), 3–13. https://doi.org/https://doi.org/10.3959/1536-1098-69.1.3
van der Maaten-Theunissen, M., van der Maaten, E., & Bouriaud, O. (2015). pointRes: An R package to analyze pointer years and components of resilience. Dendrochronologia, 35, 34–38. https://doi.org/https://doi.org/10.1016/j.dendro.2015.05.006
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718. https://doi.org/https://doi.org/10.1175/2009JCLI2909.1
Von Döhren, P., & Haase, D. (2015). Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecological Indicators, 52, 490–497. https://doi.org/https://doi.org/10.1016/j.ecolind.2014.12.027
Wang, B., Chen, T., Li, C., Xu, G., Wu, G., & Liu, G. (2022). Discrepancy in growth resilience to drought among different stand-aged forests declines going from a semi-humid region to an arid region. Forest Ecology and Management, 511, 120135. https://doi.org/https://doi.org/10.1016/j.foreco.2022.120135
Wang, X., & Wang, X. (2024). Hotter drought and trade-off between fast and slow growth strategies as major drivers of tree-ring growth variability of global conifers. Journal of Ecology, 112(5), 1123–1139. https://doi.org/https://doi.org/10.1111/1365-2745.14290
Wilmking, M., van der Maaten-Theunissen, M., van der Maaten, E., Scharnweber, T., Buras, A., Biermann, C., Gurskaya, M., Hallinger, M., Lange, J., Shetti, R., Smiljanic, M., & Trouillier, M. (2020). Global assessment of relationships between climate and tree growth. Global Change Biology, 26(6), 3212–3220. https://doi.org/https://doi.org/10.1111/gcb.15057
Publicado
2024-12-01
Cómo citar
Martínez-Rivas, J., Acosta-Hernández, A., Vivar-Vivar, E., & Silva-Avila, N. (2024). Resiliencia de <i>Abies durangensis</i&gt; Martínez a sequías en el suroeste de Durango mediante proxies dendroecológicos. POLIBOTÁNICA, (59). https://doi.org/10.18387/polibotanica.59.6
Sección
Artículos