Phylogenetic relationships of Phaseolus species from méxico based on chloroplastic DNA markers

Authors

  • Sanjuana Hernández-Delgado Centro de Biotecnología Genómica IPN
  • Victor Hugo Villarreal-Villagrán Centro de Biotecnología Genómica IPN
  • José S. Muruaga-Martínez
  • Maria LuisaPatricia Vargas-Vázquez
  • Netzahualcoyotl Mayek-Perez Universidad Autónoma de Tamaulipas

DOI:

https://doi.org/10.18387/polibotanica.53.3

Keywords:

Chloroplast DNA sequencing, genetic relationships, germplasm collection, phylogeny, wild beans

Abstract

The genus Phaseolus is one of the most representative genetic resources from Mexico. From the more than 70 species known and distributed throughout the Americas, nearly half are endemic to the Mexican territory. To elucidate the phylogeny and endemism of Phaseolus spp. throughout our country more research is needed where the less known species are also included. The aims of this study were to collect germplasm of Phaseolus species through Mexico and to determine their molecular phylogenetic relationships. The selected germplasm (34 accessions) comprised 19 species, including two subspecies of P. coccineus (P. coccineus griseus and P. coccineus striatus). Three species in this collection (P. albiviolaceus, P. maculatifolius and P. rotundatus) had not been studied before. All samples were analyzed with five non-coding regions of chloroplastic DNA amplified by PCR, and amplified fragments were sequenced. Sequences were aligned and then both individually and jointly analyzed by three phylogenetic methods (Maximum Parsimony, Maximum Likelihood and Bayesian posterior probabilities). For cluster analysis the cpDNA full sequence of Vigna radiata was obtained from GenBank and its homologous sequences were added as outgroup. Cluster analysis confirmed with strong bootstrap support that the genus Phaseolus is a monophyletic group which subdivides into two major lineages: one includes P. pluriflorus, P. esperanzae, P. pedicellatus, P. microcarpus, P. glabellus, P. oligospermus, P. gladiolatus, P. zimapanensis and P. albiviolaceus; and the other includes P. filiformis, P. acutifolius, P. vulgaris, P. coccineus striatus, P. coccineus griseus, P. macvaughii, P. leptostachyus, P. lunatus, P. maculatus, P. maculatifolius and P. rotundatus. The topology of the distal subclades in all dendrograms obtained generally agrees with the topology of Phaseolus recognized to this date, which was obtained by ribosomal ITS and chloroplast trnK locus analysis. The exception was P. albiviolaceus, a species not studied before, which according to traditional morphological criteria belongs to the Pedicellatus group but that in this study appeared with the Tuerckheimii group. The other two species that were characterized for the first time (P. maculatifolius and P. rotundatus) both of which were clustered within the Polystachios group.

Author Biographies

  • Victor Hugo Villarreal-Villagrán, Centro de Biotecnología Genómica IPN

    Estudiante de la Maestría en Biotecnología Genómica

  • José S. Muruaga-Martínez

    Investigador Jubilado del INIFAP-Valle de México

  • Maria LuisaPatricia Vargas-Vázquez

    Investigadora del INIFAP Valle de México

  • Netzahualcoyotl Mayek-Perez, Universidad Autónoma de Tamaulipas

    Investigador Nacional del SNi (CVU 19880)

References

Acosta-Gallegos, J. A., Kelly, J. D. & Gepts, P. (2007). Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Science, 47, 44-59. https://doi.org/10.2135/cropsci2007.04.0008IPBS
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: Parzen E., Tanabe K., Kitagawa G. (eds) Selected Papers of Hirotugu Akaike. pp. 199-213. https://doi.org/10.1007/978-1-4612-1694-0_15.
Albert, V. A. (2005). Parsimony and phylogenetics in the genomic age. In: Parsimony, Phylogeny and Genomics. Oxford University Press, New York. pp. 1-11. DOI:10.1093/acprof:oso/9780199297306.003.0001
Álvarez, I. & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417-434. doi: 10.1016/s1055-7903(03)00208-2.
Alva-Valdivia, L. M., Goguitchaichvili, A., Ferrari, L., Rosas-Elguera, J., Urrutia-Fucugauchi, J., & Zamorano-Orozco, J. J. (2000). Paleomagnetic data from the Trans-Mexican Volcanic Belt: implications for tectonics and volcanic stratigraphy. Earth Planets Space, 52, 467–478. https://link.springer.com/content/pdf/10.1186/BF03351651.pdf
Angioi, S.A., Desiderio, F., Rau, D., Bitocchi, E., Attene, G., & Papa R. (2009). Development and use of chloroplast microsatellites in Phaseolus spp. and other legumes. Plant Biology, 11, 598-612. doi: 10.1111/j.1438-8677.2008.00143.x.
Chacón, M. I., Pickersgill, B., & Debouck D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110, 432-44. doi: 10.1007/s00122-004-1842-2.
Chacón, M. I., Pickersgill, B., Debouck, D. G., & Arias, J. S. (2007). Phylogeographic analysis of the chloroplast DNA variation in wild common bean (Phaseolus vulgaris L.) in the Americas. Plant Systematics and Evolution, 266, 175-195. DOI:10.1007/s00606-007-0536-z
Cota-Sánchez, J. H., Remarchuk, K., & Ubayasena, K. (2006). Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous. Plant Molecular Biology Reporter, 24, 161-167. DOI:10.1007/BF02914055
Delgado-Salinas, A. O. (1985). Systematics of the genus Phaseolus (Leguminosae) in North and Central America. Ph.D. Dissertation. University of Texas. Austin, USA. 363 p.
Delgado-Salinas, A., Turley, T., Richman, A., & Lavin, M. (1999). Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Systematic Botany, 24, 438-460. https://www.jstor.org/stable/2419699
Delgado-Salinas, A., Bibler, R., & Lavin, M. (2006). Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Systematic Botany, 31, 779-791. https://doi.org/10.1600/036364406779695960.
Drummond, A. J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T., & Wilson A. (2011). Geneious v5.4. University of Auckland. Auckland, New Zealand. Available from http://www.geneious.com/
Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7 Molecular Biology and Evolution, 29, 1969-1973. DOI:10.1093/molbev/mss075
Edgar, R. C. (2004). Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797. https://doi.org/10.1093/nar/gkh340
Estrada, G., Guillén, G., Olivares, J. E., Díaz, C., & Alvarado, X. (2007). La transformación genética y genómica del frijol. In: Una Ventana al Quehacer Científico, pp. 281-290. Instituto de Biotecnología de la UNAM (eds). México D.F. http://oldwww.ibt.unam.mx/server/PRG.base?tit:-,tipo:doc,dir:libros_25aniv.html
Felsenstein J. 1993. Phylogeny Inference Package (PHYLIP). Ver. 3.5. University of Washington, Seattle, USA. Available from http://cmgm.stanford.edu/phylip/.
Freytag, G. F. & Debouck, D. G. (2002). Taxonomy, Distribution, and Ecology of the Genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico, and Central America. Botanical Research Institute of Texas. Fort Worth, USA. pp. 1-268.
Gepts, P. (1996). Origin and evolution of cultivated Phaseolus species. In: Pickersgill, B & Lock, J. M. (eds.). Advances in Legume Systematics: Legumes of Economic Importance. pp. 65-78. Royal Botanic Gardens, Kew, UK.
Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221-224. doi: 10.1093/molbev/msp259.
Guindon, S. & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696-704. doi: 10.1080/10635150390235520.
Guo, X., Castillo-Ramírez, S., González, V., Bustos, P., Fernández-Vázquez, J. L., Santamaría, R. I., Arellano, J., Cevallos, M. A., & Dávila, G. (2007). Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts. BMC Genomics, 8, 228. doi:10.1186/1471-2164-8-228
Hernández-López, V. M., Vargas-Vázquez, M. L. P., Muruaga-Martínez, J. S., Hernández-Delgado, S., & Mayek-Pérez, N. (2013). Origen, domesticación y diversificación del frijol común. Avances y perspectivas. Revista Fitotecnia Mexicana, 36, 95-104. http://www.scielo.org.mx/pdf/rfm/v36n2/v36n2a2.pdf
Huson, D. H., Richter, D. C., Rausch, C., Dezulian, T., Franz, M., & Rupp, R. (2007). Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics, 8, 460-466. doi: 10.1186/1471-2105-8-460.
Kupczok, A., Schmidt, H. A., & Haeseler, A. V. (2010). Accuracy of phylogeny reconstruction methods combining overlapping gene data sets. Algorithms for Molecular Biology, 5, 1-17. DOI:10.1186/1748-7188-5-37
Lavin, M., Herendeen, P. S., & Wojciechowski, M. F. (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Systematic Biology, 54, 530–549. https://doi.org/10.1080/10635150590947131
Lépiz-Ildefonso, R., López-Alcocer, J. J., Sánchez-González, J. J., Santacruz-Ruvalcaba, F., Nuño, R., & Rodríguez-Guzmán, E. (2010). Características morfológicas de formas cultivadas, silvestres e intermedias de frijol común de hábito trepador. Revista Fitotecnia Mexicana, 33, 21-28. DOI:10.35196/rfm.2010.1.21
Llaca, V., Delgado-Salinas, A., & Gepts, P. (1994). Chloroplast DNA as an evolutionary marker in the Phaseolus vulgaris complex. Theoretical and Applied Genetics, 88, 646-648. DOI:10.1007/BF01253966
López-Soto, J. L., Ruiz-Corral, J. A., Sánchez-González, J. J., & Lépiz-Ildefonso, R. (2005). Adaptación climática de 25 especies de frijol silvestre (Phaseolus spp.) en la República Mexicana. Revista Fitotecnia Mexicana, 28, 221-230. https://www.revistafitotecniamexicana.org/documentos/28-3/6a.pdf
Meza-Vázquez, K. E., Lépiz-Ildefonso, R., López-Alcocer, J. J., & Morales-Rivera, M. M. (2015). Caracterización morfológica y fenológica de especies silvestres de frijol (Phaseolus). Revista Fitotecnia Mexicana, 38, 17-28. http://www.scielo.org.mx/pdf/rfm/v38n1/v38n1a4.pdf
Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253-1256. DOI: 10.1093/molbev/msn083
Ronquist, F. & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
Salcedo, J. C., Lépiz, R., Castañeda, N. A., Ocampo, C., & Debouck, D. G. (2009). Additional observations about Phaseolus rotundatus (Fabaceae), an endemic bean species from western Mexico. Journal of the Botanical Research Institute of Texas, 3, 751-762. https://www.jstor.org/stable/41971867
Smýkal, P., Coyne, S. J., Ambrose, M. J., Maxted, N., Schaefer, H., Blair, M. W., Berger, J., Greene, S. L., Nelson, M. N., Besharat, N., Wymyslický, T. C., Saxena, R. K., Roorkiwal, M., Pandey, M. K., Hu, J., Li, Y. H., Wang, L. X., Guo, Y., Qiu, L. J., Redden, R. J., & Varshney, R. K. (2015). Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 34, 43-104. https://doi.org/10.1080/07352689.2014.897904
Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Biochemistry, 74, 5463-5467. DOI: 10.1073/pnas.74.12.5463
Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics, 6, 461-464. DOI: 10.1214/aos/1176344136
Servín, L. E. & Márquez-Ortíz, Y. (2007). A new phylogenetic analysis of Phaseolus species: patterns of diversification and biogeography. PhaseomicsV. Varenna, Italy. p. 11. https://www.cnr.it/it/eventi/allegato/7959
Tangphatsornruang, S., Sangsrakru, D., Chanprasert, J., Uthaipaisanwong, P., Yoocha, T., Jomchai, N., & Tragoonrung, S. (2010). The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Research, 17, 11-22. doi: 10.1093/dnares/dsp025.
Vekemans, X., Hardy, O., Berken, B., Fofana, B., & Baudoin, J. P. (1998). Use of PCR-RFLP on chloroplast DNA to investigate phylogenetic relationships in the genus Phaseolus. Biotechnology, Agronomy, Society and Environment, 2, 128-134. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.571.5809&rep=rep1&type=pdf

Published

2022-02-14

Issue

Section

Articles

How to Cite

Phylogenetic relationships of Phaseolus species from méxico based on chloroplastic DNA markers. (2022). POLIBOTANICA, 1(53). https://doi.org/10.18387/polibotanica.53.3