Comparison of soil respiration rates in agricultural, rangeland, and urban ecosystems at semiarid areas in Juárez, Chihuahua, Mexico
DOI:
https://doi.org/10.18387/polibotanica.60.6Keywords:
electrical conductivity, carbon dioxide, organic matter, pH, TextureAbstract
The activity of microorganisms and vegetation roots generates soil respiration by releasing CO₂ into the atmosphere. This process requires an assessment to quantify the impacts on semiarid ecosystems. The objective was to compare soil respiration rates in three ecosystems: agricultural, rangeland, and urban, also correlation with soil physical and chemical properties. Soil samples were collected at a depth of 0 to 15 cm at five sites with five replicates in each ecosystem. The variables evaluated were mineral particle content, bulk density, porosity, organic matter, alkalinity, salinity, and soil respiration. The C-CO2 emission was assessed on change in the electrical conductivity measurement of 0.5% KOH in aerobic incubations. Significant differences were detected for sand, silt, salinity, organic matter and soil respiration, but bulk density, clay, and pH did not present significant differences between ecosystems. The lowest soil respiration rate (mg C-CO2 kg-1 día-1) was observed in the rangeland, which in turn had a lower organic matter content, and lower porosity. The agricultural soil showed more respiration than the rangeland soil, but less than the urban park soil, which was twice as high as the agricultural soil, and presented lower salinity and higher amounts of organic matter. Significant correlations were found between respiration rates and the organic matter content and sand percentage. The trends in soil respiration observed between ecosystems contribute to the understanding of CO2 emissions in semi-arid areas, and impact on climate change.
References
Aguilar, A., E. J. D., C. J. Z. (1987). Análisis químico para evaluar la fertilidad del suelo (A. C., Sociedad Mexicana de la Ciencia del Suelo, Ed.; 1st ed., Vol. 1). Sociedad Mexicana de la Ciencia del Suelo, A.C.
Batterman, Z., K. Kurtz, D. J. Moebius-Clune, B. S. (2022). Respiration. Https://Soilhealthlab.Cals.Cornell.Edu/. https://doi.org/https://soilhealthlab.cals.cornell.edu
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54, 646–665.
Brady, N. C. & R. R. W. (2017). The nature and properties of soils (Brady & Weil, Ed.; 15th ed., Vol. 1). Prentice Hall.
Bremner, J. M. (1996). Methods of soil analysis, part 3. Chemical methods. (D. L. Sparks, Ed.; 1st ed., Vol. 3). Soil Science Society of America.
Campuzano, E. F., Delgado-Balbuena, J., & Flores-Rentería, D. (2021). Controlling factors of the ecosystem and soil respiration in a xeric shrubland in the Chihuahuan Desert, Mexico. Terra Latinoamericana, 39(December), 1–14. https://doi.org/10.28940/TERRA.V39I0.1251
Campuzano, E. F., Guillen-Cruz, G., Juárez-Altamirano, R., & Flores-Rentería, D. (2025). Seasonal and Land Use Effects on Soil Respiration and Its Controlling Factors in Arid Lands from Northeastern Mexico. Soil Systems, 9(1). https://doi.org/10.3390/soilsystems9010012
Carlos A. Ortiz Solorio. (2010). Edafologia (Universidad Autónoma Chapingo, Ed.; 8th ed., Vol. 1). Universidad Autónoma Chapingo.
Castellanos, J. Z., U.-B. J. X., A.-S. A. (2000). Manual de interpretación de análisis de suelos y aguas (2nd ed., Vol. 1). Instituto de Capacitación para la Productividad Agrícola.
Celaya, H., & Castellanos, A. (2011). Nitrogen Mineralization on Arid and Semi-Arid Land Soil. Terra Latinoamericana, 29(3), 343–356. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792011000300343
CIEPS. (1970). Estudio de Factibilidad para la rehabilitación del Distrito de Riego (Valle de Juárez, Chihuahua. CIEPS. https://doi.org/https://sigagis.conagua.gob.mx/listado21/listadoAS.pdf.
CP. (2007). Manual de procedimientos para análisis de suelos y plantas del laboratorio de fertilidad de suelos.
Cueva, R. A., C. AA., R. Z.Z., G. P., E. A.A., Y. (2016). Soil respiration in Mexico: Advances and future directions.
https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187- 57792016000300253
Flores-márgez, J. P., Poncio-acosta, M. Z., Salas-galván, E., Pérez-casio, F., Corral-avitia, A. Y., Salazar-sosa, E., & Idilio, H. (2010). Mineralización De Nitrógeno En Biosólidos. Terra Latinoamericana, 307–317.
Ganjegunte, G. K., J. A. Clarc. k, R. S. E. S. M. S. G. Á. B. L. (2017). Soil salinity of an urban park after long-term irrigation with saline ground water. Agronomy Journal, 109(6), 311–318.
García-Carrillo, M., Luna-Ortega, J. G., Gallegos-Robles, M. Á., Preciado-Rangel, P., Cervantes-Vázquez, M. G., & González-Salas, U. (2020). Impact of wastewater on soil properties and accumulation of heavy metals. Terra Latinoamericana, 38(4), 907–916. https://doi.org/10.28940/terra.v38i4.556
Gutiérrez-gutiérrez, M., & Mendoza-aguilar, D. O. (2022). Inf luencia de las biocostras en el f lujo de CO 2 en el matorral desértico micróf ilo del altiplano mexicano Inf luence of biocrusts on the CO 2 f lux in the microphyllous desert shrubland of the Mexican plateau. Terra Latinoamericana, 1–11.
Havlin, J. L., J. D., B. S. L. T. W. L. N. (1999). Soil fertility and fertilizers: an introduction to nutrient management (North Carolina State University, Ed.; 6th ed., Vol. 1). Prentice Hall.
INEGI. (2017). Superficie por tipo de uso de suelo en México. Mapas INEGI. https://doi.org/https://www.inegi.org.mx/temas/suelo
Irving, D., Bakhshandeh, S., Tran, T. K. A., & McBratney, A. B. (2024). A cost-effective method for quantifying soil respiration. Soil Security, 16. https://doi.org/10.1016/j.soisec.2024.100162
Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G., & Heitman, J. L. (2020). The effects of compost incorporation on soil physical properties in urban soils – A concise review. In Journal of Environmental Management (Vol. 261). Academic Press. https://doi.org/10.1016/j.jenvman.2020.110209
Lai, L. X. Z. L. J. Y. W. L. L., Y. Z. X. C. G. M. R. (2012). Soil Respiration in Different Agricultural and Natural Ecosystems in an Arid Region. PLOS One, 7(1), 1–10. https://doi.org/https://doi.org/10.1371/journal.pone.0048011
Lal, R. (2004). Carbon sequestration in dryland ecosystems. Environmental Management, 33(4), 528–544. https://doi.org/10.1007/s00267-003-9110-9
Lal, R., B. A. S. (2017). Urban Soils (CRC Press, Ed.; 1st ed., Vol. 1). CRC Press. https://doi.org/https://www.taylorfrancis.com/books/edit/10.1201/9781315154251/urban-soils-rattan-lal-stewart
Li, Y., K. Z. Y. L. P. W. (2024). Temperature sensitivity of soil respiration to elevated temperature and nitrogen availability. Soil & Tillage Research, 244, 1–10.
Mann, T. A., Yanai, R. D., Fahey, T. J., & Reinmann, A. B. (2024). Nitrogen and Phosphorus Addition Affect Soil Respiration in Northern Hardwood Forests. Ecosystems. https://doi.org/10.1007/s10021-024-0091
Mendoza, C. G. & J. P. F. M. (2022). Efecto de agricultura en contenido de materia orgánica en suelos en el norte de Chihuahua. In F. L. V., G. M. P., N. A. S. A., F. F.. F. Ayala N. (Ed.), Innovacion y suelos sanos para el desarrollo sustentable (pp. 453–458). Sociedad Mexicana de la Ciencia del Suelo.
Nelson, D. W., & L. E., S. (1996). Total carbon, organic carbon and organic matter. In J. M. Bartels (Ed.), Methods of soil analysis, Chemical methods. Part 3 (3rd ed., Vol. 1, pp. 961–1010). Soil Science Society of America. Madison.
Niño, F. A., Delgado, Y. M., & Diéguez, E. T. (2018). Carbon storage and flux in arid soils as an environmental service: An example in northwestern Mexico. Terra Latinoamericana, 36(2), 93–104. https://doi.org/10.28940/terra.v36i2.334
Ryan, M. G., & Law, B. E. (2005). Interpreting, measuring, and modeling soil respiration. In Biogeochemistry (Vol. 73, Issue 1, pp. 3–27). https://doi.org/10.1007/s10533-004-5167-7
Salgado, G.S., & R. Núñez, E. (2010). Manejo de fertilizantes químicos y orgánicos (B. B. de Agricultura, Ed.; 1st ed.). Colegio de Postgraduados.
SEMARNAT. (2000). Secretaria de Medio Ambiente y Recursos Naturales. Norma Oficial Mexicana. Establece Las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos; Estudios, Muestreo y Análisis.
USDA. (1971). Soil Survey, El Paso County, Texas (S. C. Service, Ed.; 1st ed.). United States Department of Agriculture. https://doi.org/https://ttu-ir.tdl.org/items/2a9a546e-102c-4f52-8e1e-694b2fb31c1b
WRB. (2016). Base referencial mundial del recurso suelo (FAO, Ed.; 1st ed., Vol. 1). FAO.
Yu, H., L. X., M. Q., Y. Z., W. Y., X. Z., & Z. G. (2021). Climatic warming enhances soil respiration resilience in an arid ecosystem. Science of the Total Environment, 756, 1–10.
Zalacáin, D., Bienes, R., Sastre-Merlín, A., Martínez-Pérez, S., & García-Díaz, A. (2019). Influence of reclaimed water irrigation in soil physical properties of urban parks: A case study in Madrid (Spain). Catena, 180(May 2018), 333–340. https://doi.org/10.1016/j.catena.2019.05.012
Zhang, L., Chen, Y., Li, W., & Zhao, R. (2009). Abiotic regulators of soil respiration in desert ecosystems. Environmental Geology, 57(8), 1855–1864. https://doi.org/10.1007/s00254-008-1474-y
Zhou, H. L. W. Y. Y. C. Z. L. Z. (2011). Soil respiration variant and its effecting factors at different land use in arid land. Geographical Science, 31(2), 190–196.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2026 POLIBOTANICA

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Polibotánica by Departamento de Botánica de la Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

















