Monthly phenological dynamics of mixed forest species

Authors

  • Andrea C. Acosta-Hernández Laboratorio de Dendroecología, Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Dgo s/n, Col. Valle del Sur, Durango, Durango, 34120, México.
  • Eduardo D. Vivar-Vivar Laboratorio de Dendroecología, Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Durango, s/n, Col. Valle del Sur, Durango, Durango, 34120, México.
  • Marín Pompa-García Laboratorio de Dendroecología, Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Durango, s/n, Col. Valle del Sur, Durango, Durango, 34120, México.

DOI:

https://doi.org/10.18387/polibotanica.60.14

Keywords:

Phenology; mixed forests; multispecies; Pinus; Quercus; Juniperus; Arbutus.

Abstract

Forest ecosystems are modifying their phenology as a consequence of frequent and exacerbated drought episodes. Mixed forests have been considered strategic to cope with climate change, so knowing their phenological processes contributes to generate useful information to anticipate changes in species composition in the face of global warming. In this study, we describe the phenophases of five coexisting species in a mixed forest in a highly diverse but drought-susceptible region of northern Mexico on a monthly basis over the course of a year. We found several phenophases among conifers and broadleaved trees, including resting, leaf fall, bud development, foliage elongation, and formation and growth of reproductive organs, with their temporal differences among them. The species Pinus engelmannii had the earliest onset of its phenophases, while Arbutus bicolor was the latest in some phases. Juniperus deppeana had the longest duration and Arbutus bicolor the shortest. Although more complementary climate data are required, as well as shortening the periodicity of sampling, our results are interpreted as responses to physiological mechanisms presented by the species as strategies to respond to the environment. Although the results are not entirely conclusive, they constitute an essential basis for further monitoring and to enhance the understanding of phenology in mixed forests in the face of predicted drought scenarios.

Author Biographies

  • Andrea C. Acosta-Hernández, Laboratorio de Dendroecología, Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Dgo s/n, Col. Valle del Sur, Durango, Durango, 34120, México.

    Research Associate at the Dendroecology Laboratory, Faculty of Forestry and Environmental Sciences, Juárez University of the State of Durango.

  • Eduardo D. Vivar-Vivar, Laboratorio de Dendroecología, Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Durango, s/n, Col. Valle del Sur, Durango, Durango, 34120, México.

    Research Associate at the Dendroecology Laboratory, Faculty of Forestry and Environmental Sciences, Juárez University of the State of Durango.

  • Marín Pompa-García, Laboratorio de Dendroecología, Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Durango, s/n, Col. Valle del Sur, Durango, Durango, 34120, México.

    I pursued my bachelor from Chapingo University, master (ColPos) and PhD (UANL) in Forestry Sciences. I Joined FCFyA of the UJED as full-time professor since October 2006 and working with colleagues our research focuses in natural resources conservation and management. Currently, I am broadly interested in Forest ecology using tree-rings and spatial analysis in GIS environment.

References

Adams, R. P., Schwarzbach, A. E., Nguyen, S., & Morris, J. A. (2007). Geographic variation in Juniperus deppeana. Phytologia, 89(2), 132–150.

Alcantara Cortes, J. S., Acero-Godoy, J., Alcántara-Cortés, J. D., & Sánchez-Mora, R. M. (2019). Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. NOVA, 17(32), 109–129.

Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6(8), 1–55. https://doi.org/10.1890/ES15-00203.1

Anderegg, W. R. L., Trugman, A. T., Badgley, G., Anderson, C. M., Bartuska, A., Ciais, P., Cullenward, D., Field, C. B., Freeman, J., Goetz, S. J., Hicke, J. A., Huntzinger, D., Jackson, R. B., Nickerson, J., Pacala, S., & Randerson, J. T. (2020). Climate-driven risks to the climate mitigation potential of forests. Science, 368(6497), eaaz7005. https://doi.org/10.1126/science.aaz7005

Brown, T. B., Hultine, K. R., Steltzer, H., Denny, E. G., Denslow, M. W., Granados, J., Henderson, S., Moore, D., Nagai, S., SanClements, M., Sánchez‐Azofeifa, A., Sonnentag, O., Tazik, D., & Richardson, A. D. (2016). Using phenocams to monitor our changing Earth: toward a global phenocam network. Frontiers in Ecology and the Environment, 14(2), 84–93. https://doi.org/10.1002/fee.1222

Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. (2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22(7), 357–365. https://doi.org/10.1016/j.tree.2007.04.003

Cleland, R. E. (2010). Auxin and Cell Elongation. En P. J. Davies (Ed.), Plant Hormones: Biosynthesis, Signal Transduction, Action! (3a ed., pp. 204–220). Springer Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_10

Delpierre, N., Vitasse, Y., Chuine, I., Guillemot, J., Bazot, S., Rutishauser, T., & Rathgeber, C. B. K. (2016). Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 73, 5–25. https://doi.org/10.1007/s13595-015-0477-6

Duputié, A., Rutschmann, A., Ronce, O., & Chuine, I. (2015). Phenological plasticity will not help all species adapt to climate change. Global Change Biology, 21(8), 3062–3073. https://doi.org/10.1111/gcb.12914

Felipe-Lucia, M. R., Soliveres, S., Penone, C., Manning, P., van der Plas, F., Boch, S., Prati, D., Ammer, C., Schall, P., Gossner, M. M., Bauhus, J., Buscot, F., Blaser, S., Blüthgen, N., de Frutos, A., Ehbrecht, M., Frank, K., Goldmann, K., Hänsel, F., … Allan, E. (2018). Multiple forest attributes underpin the supply of multiple ecosystem services. Nature Communications, 9, 4839. https://doi.org/10.1038/s41467-018-07082-4

Flores, S., Forister, M. L., Sulbaran, H., Díaz, R., & Dyer, L. A. (2023). Extreme drought disrupts plant phenology: Insights from 35 years of cloud forest data in Venezuela. Ecology, 104(5), e4012. https://doi.org/10.1002/ecy.4012

Fritts, H. C. (1976). Tree Rings and Climate. Academic Press. https://doi.org/10.1016/B978-0-12-268450-0.X5001-0

García-Pérez, J. L., Aldrete, A., López-Upton, J., Vargas-Hernández, J. J., & Prieto-Ruíz, J. Á. (2015). Efecto de la condición ambiental y la fertilización en el preacondicionamiento de Pinus engelmannii Carr. en vivero. Revista Fitotecnia Mexicana, 38(3), 297–304.

González-Elizondo, M. S., González-Elizondo, M., & Sørensen, P. D. (2012). Arbutus bicolor (Ericaceae, Arbuteae), a new species from Mexico. Acta Botanica Mexicana, 99, 55–72. https://doi.org/10.21829/abm99.2012.19

González-Elizondo, M. S., González-Elizondo, M., Tena-Flores, J. A., Ruacho-González, L., & López-Enríquez, I. L. (2012). Vegetación de la Sierra Madre Occidental, México: Una síntesis. Acta Botanica Mexicana, 100, 351–403. https://doi.org/10.21829/abm100.2012.40

Gray, R. E. J., & Ewers, R. M. (2021). Monitoring forest phenology in a changing world. Forests, 12(3), 297. https://doi.org/10.3390/f12030297

Herrerías-Mier, L. G., & Nieto de Pascual Pola, C. del C. (2020). Structural and demographic characteristics of Juniperus deppeana Steud. In two locations in Tlaxcala State. Revista Mexicana de Ciencias Forestales, 11(61). https://doi.org/10.29298/rmcf.v11i61.618

Hsiao, T. C. (1973). Plant Responses to Water Stress. Annual Review of Plant Physiology, 24, 519–570. https://doi.org/10.1146/annurev.pp.24.060173.002511

Keenan, R. J. (2015). Climate change impacts and adaptation in forest management: a review. Annals of Forest Science, 72, 145–167. https://doi.org/10.1007/s13595-014-0446-5

Madrid-Aispuro, R. E., Cordova-Saucedo, M. D., Prieto-Ruíz, J. Á., Aldrete, A., Salcido-Ruiz, S., & Pérez-Luna, A. (2025). Crecimiento de Quercus durifolia Seemen en sustratos con turba, corteza, aserrín y fertilizante de liberación controlada. Revista Mexicana de Ciencias Forestales, 16(88), 74–97. https://doi.org/10.29298/rmcf.v16i88.1526

Martínez, A. J., Sainos, P., Lezama Delgado, E., & Angeles-Álvarez, G. (2007). El tamaño sí importa: los frutos grandes de Juniperus deppeana Steud. (sabino) son más susceptibles a depredación por insectos. Madera y Bosques, 13(2), 65–81. https://doi.org/10.21829/myb.2007.1321229

Molina-Marchan, E., Narváez-Flores, R., & Mojica-Guerrero, A. S. (2024). Estructura horizontal y diversidad de los bosques de Pseudotsuga menziesii (Mirb) Franco en México. Polibotánica, 0(57), 63–80. https://doi.org/10.18387/polibotanica.57.4

Morellato, L. P. C., Alberton, B., Alvarado, S. T., Borges, B., Buisson, E., Camargo, M. G. G., Cancian, L. F., Carstensen, D. W., Escobar, D. F. E., Leite, P. T. P., Mendoza, I., Rocha, N. M. W. B., Soares, N. C., Silva, T. S. F., Staggemeier, V. G., Streher, A. S., Vargas, B. C., & Peres, C. A. (2016). Linking plant phenology to conservation biology. Biological Conservation, 195, 60–72. https://doi.org/10.1016/j.biocon.2015.12.033

Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R., & Bugmann, H. (2018). Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 8, 5627. https://doi.org/10.1038/s41598-018-23763-y

Nixon, K. C., & Muller, C. H. (2020, diciembre 5). Quercus grisea Liebmann. Flora of North America. http://floranorthamerica.org/Quercus_grisea

Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., … Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332). https://doi.org/10.1126/science.aai9214

Pettorelli, N., Wegmann, M., Skidmore, A., Mücher, S., Dawson, T. P., Fernandez, M., Lucas, R., Schaepman, M. E., Wang, T., O’Connor, B., Jongman, R. H. G., Kempeneers, P., Sonnenschein, R., Leidner, A. K., Böhm, M., He, K. S., Nagendra, H., Dubois, G., Fatoyinbo, T., … Geller, G. N. (2016). Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sensing in Ecology and Conservation, 2(3), 122–131. https://doi.org/10.1002/rse2.15

Pezzini, F. F., Ranieri, B. D., Brandão, D. O., Fernandes, G. W., Quesada, M., Espírito-Santo, M. M., & Jacobi, C. M. (2014). Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 148(5), 965–974. https://doi.org/10.1080/11263504.2013.877530

Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., & Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 25(6), 1922–1940. https://doi.org/10.1111/gcb.14619

Pompa-García, M., Camarero, J. J., Valeriano, C., & Vivar-Vivar, E. D. (2025). Variable growth responses of four tree species to climate and drought in a Madrean pine-oak forest. Forest Ecosystems, 12, 100292. https://doi.org/10.1016/j.fecs.2025.100292

Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P., & Ollinger, S. V. (2009). Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecological Applications, 19(6), 1417–1428. https://doi.org/10.1890/08-2022.1

Rodríguez-Laguna, R., Vargas-Hernández, J. J., Cetina-Alcalá, V. M., Ramírez-Herrera, C., & Escalante-Estrada, J. A. (2000). Variación en el patrón de alargamiento del brote terminal en diferentes procedencias de Pinus engelmannii Carr. Revista Mexicana de Ciencias Forestales, 85(87), 77–103.

Ryan, M. G. (2010). Editorial: Temperature and tree growth. Tree Physiology, 30(6), 667–668. https://doi.org/10.1093/treephys/tpq033

Tang, J., Körner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S. J., & Yang, X. (2016). Emerging opportunities and challenges in phenology: A review. Ecosphere, 7(8), e01436. https://doi.org/10.1002/ecs2.1436

Tovar-Rocha, V., Rocha-Granados, M. del C., & Delgado-Valerio, P. (2017). Influencia de la maduración del fruto de Arbutus xalapensis Kunth sobre la germinación de semillas y embriones cigóticos. Polibotánica, 37(19), 79–92.

Valencia-Avalos, S., Coombes, A. J., Rodríguez-Acosta, M., Parra-Suárez, A., Morales-Sandoval, P., Bassuk, N., González-Rodríguez, A., Llanderal-Mendoza, J., Alvarez-Clare, S., Beckman, E., Carrero, C., Paist, S., & Westwood, M. (2020). Manual para la propagación de Quercus: una guía fácil y rápida para cultivar encinos en México y América Central (M. Rodríguez-Acosta & A. J. Coombes, Eds.; 1a ed.). Benemérita Universidad Autónoma de Puebla.

Valladares, F., Vilagrosa, A., Peñuelas, J., Ogaya, R., Camarero, J. J., Corcuera, L., Sisó, S., & Gil-Pelegrín, E. (2004). Estrés hídrico: ecofisiología y escalas de la sequía. En F. Valladares (Ed.), Ecología del bosque mediterráneo en un mundo cambiante (2a ed., pp. 163–190). Ministerio de Medio Ambiente.

Vitasse, Y., Schneider, L., Rixen, C., Christen, D., & Rebetez, M. (2018). Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 248, 60–69. https://doi.org/10.1016/j.agrformet.2017.09.005

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., Reed, B. C., & Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3), 471–475. https://doi.org/10.1016/S0034-4257(02)00135-9

1256

Downloads

Published

2026-01-26

How to Cite

Monthly phenological dynamics of mixed forest species. (2026). POLIBOTANICA, 61. https://doi.org/10.18387/polibotanica.60.14