

Julio 2024

POLIB TÁNICA Núm. 58

Polib Tánica

ISSN 1405-2768

ISSN 2395-9525

Núm. 56

Julio 2024

SECRETARÍA DE EDUCACIÓN PÚBLICA

Instituto Politécnico Nacional "La Técnica al Servicio de la Patria"

CONTENIDO

- PÁG. Primeros registros de dinoflagelados de la Reserva de la Biosfera Isla Guadalupe, Baja California, México First records of dinoflagellates from the Guadalupe Island Biosphere Reserve, Baja California, Mexico Ismael Gárate-Lizárraga | Francisco Omar López Fuerte | Yuri B Okolodkov | Demetrio Boltovskoy | Sergio Flores-Ramírez | Ricardo Yabur
- Un enfoque integrativo revela la identidad y la distribución interoceánica de la diatomea Halamphora adumbratoides Stepanek & Kociolek 2018 (Bacillariophyceae: Amphipleuraceae) 17 An integrative approach reveals the identity and interoceanic distribution of the diatom Halamphora adumbratoides Stepanek & Kociolek 2018 (Bacillariophyceae: Amphipleuraceae) Omar López-Fuerte | Lora-Vilchis Murugan
- 31 Riqueza y composición de líquenes de los pueblos mágicos de Cuetzalan y Tlatlauquitepec, Puebla, México Lichen richness and composition of the magical towns of Cuetzalan and Tlatlauquitepec, Puebla, Mexico Rosa Emilia Pérez-Pérez | Romina Silva-Espejo | Dulce María Figueroa-Castro | Carlos Castañeda-Posadas
- 49 Estructura, composición y diversidad de un bosque de galería al noroeste de México Structure, composition, and diversity of a gallery forest in northwest Mexico María de Fatima Amaran-Ruiz | Eduardo Alanís-Rodríguez | Andrés Eduardo Estrada-Castillón | Luis Gerardo Cuellar-Rodríguez | Oscar Alberto Aguirre-Calderón | Guadalupe Geraldine García-Espinoza
- 65 Estado actual de la estructura y composición del bosque de Pinus culminicola var. culminicola en un gradiente altitudinal en el Cerro El Potosí, Galeana, Nuevo León, México Current status of the structure and composition of the Pinus culminicola var. culminicola forest in an altitudinal gradient at Cerro El Potosi, Galeana, Nuevo Leon, Mexico Aldo Tovar-Cárdenas | Luis Gerardo Cuéllar-Rodríguez | Marisela Pando-Moreno | Enrique Jurado-Ybarra | José Israel Yerena-Yamallel | Homero Alejandro Gárate-Escamilla
- 85 Composición, estructura y diversidad del arbolado urbano de la Colonia Contry en Monterrey, México Composition, structure, and diversity of the urban tree of Colonia Contry in Monterrey, Mexico María Cecilia Hernández-Cavazos | Eduardo Alanís-Rodríguez | Víctor Manuel Molina-Guerra | Javier Jiménez-Pérez | Oscar Aguirre-Calderón | Gerardo Cuellar-Rodríguez
- 101 Diversidad y estructura de especies arbóreas en tres tipos de vegetación forestal al sur de Durango, México Diversity and structure of tree species in three types of forest vegetation in southern Durango, Mexico Edgar Silva-González | José Guadalupe Colín | Oscar Alberto Aguirre-Calderón | Eduardo Javier Treviño-Garza | José Javier Corral-Rivas | Gyorgy Eduardo Manzanilla-Quijada
- 119 Diversidad de la vegetación a través de un gradiente de humedad del Oasis San Ignacio, Baja California Sur, México Vegetation diversity through a humidity gradient of San Ignacio Oasis, Baja California Sur, Mexico Nancy Silva-Ávila | Francisco Javier Hernández | Juan Abel Nájera-Luna | Carlos Enrique Aguirre-Calderón
- 135 Supervivencia y crecimiento de una reforestación de seis especies del matorral espinoso tamaulipeco en el noreste de México Survival and growth of a reforestation of six species of the Tamaulipan thornscrub in northeastern Mexico José Manuel Mata-Balderas | Eduardo Alanís-Rodríguez | Tania Isela Sarmiento-Muñoz | Edwin Samuel Rodríguez-Alejandro | Adriana Concepcción Garza-Pérez
- 149 Actividad antibacteriana de nanopartículas de plata biosintetizadas a partir de extractos de tres especies de Agave para inhibir Bacillus licheniformis Antibacterial activity of silver nanoparticles biosynthesized from extracts of three species of Agave to inhibit Bacillus licheniformis Sandra Yarenssy Martínez Martínez | Amaury Martín Arzate Fernández | María Guadalupe González Pedroza | Hilda García-Núñez | Eulogio De la Cruz Torres
- 159 Tratamientos que promueven la germinación de semillas de cinco especies leñosas del Matorral Espinoso Tamaulipeco con latencia física Treatments that promote seeds germination of five woody species of the Tamaulipan Thornscrub with physical dormancy Luis Daniel Ruiz-Carranza | José Ángel Sigala-Rodríguez | Eduardo Alanís-Rodríguez | Víctor Manuel Molina-Guerra | Erickson Basave-Villalobos
- Conservación in vitro de Guarianthe skinneri (Bateman) Dressler & Higgins por mínimo crecimiento 171 In vitro conservation of Guarianthe skinneri (Bateman) Dressler & Higgins for minimal growth Marco Antonio Ramírez-Mosqueda | Raúl López-Aguilar | Andrés Orduño-Cruz | Marco Vinicio Rodríguez-Deméghi
- 181 Establecimiento in vitro de pascuita (Euphorbia leucocephala Lotsy) e inducción de callos y tallos bajo diferentes colores de luz led In vitro establishment of pascuita (Euphorbia leucocephala Lotsy) and callus and shoot induction under different led light colors María Teresa Colinas-León | Carlos de Jesus Morales-Becerril | Ramón Marcos Soto-Hernández | María Teresa Martínez-Damián | Natanael Magaña-Lira | José Luis Rodríguez-de la O
- 197 Conocimientos moleculares sobre la embriogénesis somática en Agave angustifolia: caracterización del gen AaSERK Molecular insights into somatic embryogenesis in Agave angustifolia: characterization of the AaSERK gene Jesús Ignacio Reyes-Díaz | Amaury Martín Arzate-Fernández
- 209 Caracterización morfológica de frutos de Malpighia glabra en dos regiones bioclimáticas del estado de Yucatán, México Morphological characterization of Malpighia glabra fruits in two bioclimatic regions from Yucatán state, Mexico Monserrat Concepción Esquivel-Chi | Rubén Humberto Andueza-Noh | Esaú Ruíz-Sánchez | Marcela Gamboa-Angulo | Angel Manuel Herrera-Gorocica | Daniel Potter | Emanuel Hernández-Núñez | Gabriel Dzib
- 225 Comportamiento de tomates criollos (Solanum lycopersicum) del Sureste de México al complejo Bemisia tabaci - begomovirus Behavior of native tomatoes (Solanum lycopersicum) from Southeastern Mexico to Bemisia tabaci-Begomovirus complex Ana L Ruiz-Jiménez | Esaú Ruiz-Sánchez | Luis Latournerie-Moreno | Zaci F Chan-Escalante | Alicia R Lara-Martín | Alejandro García-Ramírez
- 237 Fibras y diseños utilizados en la elaboración de papel amate en San Pablito, Pahuatlán, Puebla, México Fibers and designs used in the production of amate paper in San Pablito, Pahuatlán, Puebla, Mexico Rosaura Citlalli López-Binnquist | Adolfo de Jesús Rebolledo-Morales
- 251 Especies vegetales conocidas como camorreal en San Pedro el Alto, Oaxaca, México The plant species known as camorreal in San Pedro el Alto, Oaxaca, Mexico Gisela Virginia Campos-Angeles | Josefa Itzel Pérez-Luis | Valentín José Reyes-Hernández | Gerardo Rodríguez-Ortiz | Mireya Burgos-Hernández | José Raymundo Enríquez-del Valle
- 265 Diversidad de agaves utilizados en la extracción de savia para la producción de jarabe de aguamiel en el estado de Hidalgo, México Diversity of agaves used in the extraction of sap to produce aguamiel syrup in the state of Hidalgo, Mexico Carmen Julia Figueredo-Urbina | Oscar Arce-Cervantes | Araceli Castañeda-Ovando

Polib Tánica

Núm. 58

ISSN electrónico: 2395-9525

Julio 2024

Portada

Ceratocorys horrida F. Stein 1883 (Oxyphysaceae) es una especie de dinoflagelado que forma parte del fitoplancton marino, crucial en la cadena alimentaria acuática. Este organismo tiene una forma redondeada con largas y delgadas espinas que le ayudan en la defensa y la flotabilidad. Se encuentra en aguas superficiales y costeras ricas en nutrientes, con una distribución global. Puede formar floraciones algales que, aunque beneficiosas en niveles moderados, pueden causar eutrofización y producir toxinas en exceso. Se utiliza en estudios de calidad del agua y salud del ecosistema marino.

Ceratocorys horrida F. Stein 1883 (Oxyphysaceae) is a species of marine dinoflagellate that is part of the phytoplankton, crucial in the aquatic food chain. This organism has a rounded shape with long, thin spines that help it with defense and buoyancy. It is found in nutrient-rich surface and coastal waters, with a global distribution. It can form algal blooms that, although beneficial in moderate levels, can cause eutrophication and produce toxins in excess. It is used in studies of water quality and marine ecosystem health.

por/by Rafael Fernández Nava

INSTITUTO POLITÉCNICO NACIONAL

Director General: *Dr. Arturo Reyes Sandoval* Secretario General: *Ing. Arq. Carlos Ruiz Cárdenas* Secretario Académico: *Mtro. Mauricio Igor Jasso Zaranda* Secretario de Innovación e Integración Social: *M. en C. Ricardo Monterrubio López* Secretario de Investigación y Posgrado: *Dra. Laura Arreola Mendoza* Secretario de Servicios Educativos: *Dra. Ana Lilia Coria Páez* Secretario de Administración: *M. en C. Javier Tapia Santoyo* Director de Educación Superior: *Dra. María Guadalupe Ramírez Sotelo*

ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS

Director:

Dr. Isaac Juan Luna Romero Subdirectora Académica: M. en C. Martha Patricia Cervantes Cervantes Jefe de la Sección de Estudios de Posgrado e Investigación: Dr. Gerardo Aparicio Ozores Subdirector de Servicios Educativos e Integración Social: Biól. Gonzalo Galindo Becerril

POLIBOTÁNICA, Año 29, No. 58, julio 2024, es una publicación semestral editada por el Instituto Politécnico Nacional, a través de la Escuela Nacional de Ciencias Biológicas. Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas C.P. 11340 Delegación Miguel Hidalgo México, D.F. Teléfono 57296000 ext. 62331. http://www.herbario.encb.ipn.mx/, Editor responsable: Rafael Fernández Nava. Reserva de Derechos al Uso Exclusivo del Título No. 04-2015-011309001300-203. ISSN impreso: 1405-2768, ISSN digital: 2395-9525, ambos otorgados por el Instituto Nacional del Derecho de Autor. Responsable de la última actualización de este número, Unidad de informática de la ENCB del IPN, Rafael Fernández Nava, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas CP 11340 Delegación Miguel Hidalgo México, D.F.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación.

Queda estrictamente prohibida la reproducción total o parcial de los contenidos e imágenes de la publicación sin previa autorización del Instituto Politécnico Nacional.

REVISTA BOTÁNICA INTERNACIONAL DEL INSTITUTO POLITÉCNICO NACIONAL

EDITOR EN JEFE

Rafael Fernández Nava

EDITORA ASOCIADA

María de la Luz Arreguín Sánchez

COMITÉ EDITORIAL INTERNACIONAL

Christiane Anderson University of Michigan Ann Arbor. Michigan, US

Heike Vibrans Colegio de Postgraduados Estado de México, México

Hugo Cota Sánchez University of Saskatchewan Saskatoon, Saskatchewan, Canada

Fernando Chiang Cabrera Universidad Nacional Autónoma de México Ciudad de México, México

> Thomas F. Daniel California Academy of Sciences San Francisco, California, US

Francisco de Asis Dos Santos Universidad Estadual de Feira de Santana Feira de Santana, Brasil

> Carlos Fabián Vargas Mendoza Instituto Politécnico Nacional Ciudad de México, México

José Luis Godínez Ortega Universidad Nacional Autónoma de México Ciudad de México, México

> José Manuel Rico Ordaz Universidad de Oviedo Oviedo, España

Edith V. Gómez Sosa Instituto de Botánica Darwinion Buenos Aires, Argentina

Jorge Llorente Bousquets Universidad Nacional Autónoma de México Ciudad de México, México Delia Fernández González Universidad de León León, España

José Angel Villarreal Quintanilla Universidad Autónoma Agraria Antonio Narro Saltillo, Coahuila, México

> Luis Gerardo Zepeda Vallejo Instituto Politécnico Nacional Ciudad de México, México

Claude Sastre Muséum National d'Histoire Naturelle París, Francia

> Mauricio Velayos Rodríguez Real Jardín Botánico Madrid, España

Noemí Waksman de Torres Universidad Autónoma de Nuevo León Monterrey, NL, México

> Julieta Carranza Velázquez Universidad de Costa Rica San Pedro, Costa Rica

> > *Tom Wendt* University of Texas Austin, Texas, US

Edith V. Gómez Sosa Instituto de Botánica Darwinion Buenos Aires, Argentina

Dr. Juan Ramón Zapata Morales Universidad de Guanajuato Guanajuato. México

DISEÑO Y FORMACIÓN ELECTRÓNICA Luz Elena Tejeda Hernández

OPEN JOURNAL SYSTEM Y TECNOLOGÍAS DE LA INFORMACIÓN *Pedro Aráoz Palomino* Toda correspondencia relacionada con la revista deberá ser dirigida a:

Dr. Rafael Fernández Nava Editor en Jefe de

Departamento de Botánica Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Apdo. Postal 17-564, CP 11410, Ciudad de México

> Correo electrónico: polibotanica@gmail.com rfernan@ipn.mx

Dirección Web http://www.polibotanica.mx

POLIBOTÁNICA es una revista indexada en:

CONAHCYT, índice de Revistas Mexicanas de Investigación Científica y Tecnológica del Consejo Nacional de Humanidades, Ciencia y Tecnología.

SciELO - Scientific Electronic Library Online.

Google Académico - Google Scholar.

DOAJ, Directorio de Revistas de Acceso Público.

Dialnet portal de difusión de la producción científica hispana.

REDIB Red Iberoamericana de Innovación y Conocimiento Científico.

LATINDEX, Sistema regional de información en línea para revistas científicas de América Latina, el Caribe, España y Portugal.

PERIODICA, Indice de Revistas Latinoamericanas en Ciencias.

Polib@tánica

Polibotánica ISSN electrónico: 2395-9525 polibotanica@gmail.com Instituto Politécnico Nacional México http://www.polibotanica.mx

UN ENFOQUE INTEGRATIVO REVELA LA IDENTIDAD Y LA DISTRIBUCIÓN INTEROCEÁNICA DE LA DIATOMEA Halamphora adumbratoides Stepanek & Kociolek 2018 (BACILLARIOPHYCEAE: AMPHIPLEURACEAE)

AN INTEGRATIVE APPROACH REVEALS THE IDENTITY AND INTEROCEANIC DISTRIBUTION OF THE DIATOM Halamphora adumbratoides Stepanek & Kociolek 2018 (BACILLARIOPHYCEAE: AMPHIPLEURACEAE)

López-Fuerte, Francisco Omar; María Concepción Lora-Vilchis y Gopal Murugan UN ENFOQUE INTEGRATIVO REVELA LA IDENTIDAD Y LA DISTRIBUCIÓN INTEROCEÁNICA DE LA DIATOMEA *Halamphora adumbratoides* Stepanek & Kociolek 2018 (BACILLARIOPHYCEAE: AMPHIPLEURACEAE) AN INTEGRATIVE APPROACH REVEALS THE IDENTITY AND INTEROCEANIC DISTRIBUTION OF THE DIATOM *Halamphora adumbratoides* Stepanek & Kociolek 2018 (BACILLARIOPHYCEAE: AMPHIPLEURACEAE)

POLIB®TÁNICA

Instituto Politécnico Nacional

Núm. **58**: 17-29 México. Julio 2024 DOI: 10.18387/polibotanica.58.2

Este es un artículo de acceso abierto bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional).

An integrative approach reveals the identity and interoceanic distribution of the diatom *Halamphora* adumbratoides Stepanek & Kociolek 2018 (Bacillariophyceae: Amphipleuraceae)

Francisco Omar López-Fuerte; María Concepción Lora-Vilchis y Gopal Murugan

UN ENFOQUE INTEGRATIVO REVELA LA IDENTIDAD Y LA DISTRIBUCIÓN INTEROCEÁNICA DE LA DIATOMEA Halamphora adumbratoides Stepanek & Kociolek 2018 (BACILLARIOPHYCEAE: AMPHIPLEURACEAE)

AN INTEGRATIVE APPROACH REVEALS THE IDENTITY AND INTEROCEANIC DISTRIBUTION OF THE DIATOM Halamphora adumbratoides Stepanek & Kociolek 2018 (BACILLARIOPHYCEAE: AMPHIPLEURACEAE)

<u>Polib@tánica</u>

Instituto Politécnico Nacional

Núm. 58: 17-29. Julio 2024

DOI: 10.18387/polibotanica.58.2 Un enfoque integrativo revela la identidad y la distribución interoceánica de la diatomea *Halamphora adumbratoides* Stepanek & Kociolek 2018 (Bacillariophyceae: Amphipleuraceae)

Francisco Omar López-Fuerte / folopez@uabcs.mx https://orcid.org/0000-0002-0828-9107 Universidad Autónoma de Baja California Sur. Departamento Académico de Ciencias Marinas y Costeras, La Paz, Baja California Sur, México

María Concepción Lora-Vilchis / cony04@cibnor.mx https://orcid.org/0000-0003-1839-6974 Gopal Murugan. Corresponding author: murugan04@cibnor.mx https://orcid.org/0000-0002-2672-7430 Centro de Investigaciones Biológicas del Noroeste S. C. La Paz, Baja California Sur, México

ABSTRACT: *Halamphora adumbratoides* was described in 2018 from the Atlantic Ocean (Florida Bay, USA), the type locality of this species. In this report, we present the morphological characteristics and molecular identity of this taxon (strain CIBA 160) collected in the Gulf of California, Mexico (Pacific Ocean region). Cells of the strain CIBA 160 obtained from laboratory cultures showed morphological characteristics inconsistent with the original description, specifically the shape of the valve and the presence of pores at the end of the dorsal raphe ledge at each end of the raphe. Regarding size, the length ($4.1-6.6 \mu m$) of the CIBA 160 strain is much shorter than in the original description ($10.0-18.0 \mu m$). However, the valve width and number of striae do coincide with the ranges in that description. At the molecular level, DNA sequences of the CIBA 160 strain showed 100, 99.8, and 99.5% similarity, respectively, for SSU, *rbcL*, and *psbC* with the *H. adumbratoides* sequences from the Atlantic Ocean. Our study supports the first case of interoceanic distribution and the second overall recording of this species. **Key words**: first recording, Gulf of California, Pacific Ocean, *psbC*, *rbcL*, SSU.

RESUMEN: *Halamphora adumbratoides* fue descrita en 2018 en muestras procedentes del Océano Atlántico, siendo Florida Bay, USA, la localidad tipo para esta especie. En esta publicación, presentamos las características morfológicas y la identidad molecular de este taxón (cepa CIBA 160) colectado en el Golfo de California, México (en la región del Océano Pacífico). Las células de la cepa CIBA 160, fueron obtenidas mediante cultivos de laboratorio y mostró características que no corresponden con la descripción original, específicamente la forma de la valva y la presencia de poros al final de cada extremo del margen dorsal del rafe. En relación al tamaño, la longitud (4.1–6.6 μ m) de la cepa CIBA 160 es menor a la de la descripción original (10.0–18.0 μ m). Sin embargo, el ancho de la valva y el número de estrías coinciden con los intervalos de la descripción. A nivel molecular, las secuencias del DNA de la cepa CIBA 160 mostraron 100, 99.8, y 99.5% de similitud, respectivamente con las secuencias de SSU, *rbc*L, y *psb*C de células de *H. adumbratoides* originarias del Océano Atlántico. Nuestro trabajo presenta el

primer registro de la distribución interoceánica y el segundo registro para esta especie desde su descripción.

Palabras clave: primer registro, Golfo de California, Océano Pacífico, psbC, rbcL, SSU.

INTRODUCTION

Diatoms are an important and diverse group of organisms that fix almost 20% of global carbon (Armbrust, 2009; Malviya *et al.*, 2016; D. G. Mann, 1999; Onuma *et al.*, 2017). However, aside from the toxic diatoms, the taxonomy of the specious class of Bacillariophyceae is 'in a rather poor state' (Mann *et al.*, 2020). The taxonomic history of the genus *Halamphora* has been dynamic since its revival by Levkov (2009) produced a considerable number of inclusions via transfers of species new nomenclatural combinations, mostly from the genus *Amphora*, descriptions of new species, and taxonomic validations. The increased number of taxonomically accepted species and intraspecific names registered in Algaebase is remarkable, from 110 in 2018 to 163 in 2023 (Guiry & Guiry 2023), which reflects the degree of complexity that this genus still represents.

In diatom, monoclonal cultures form a vital part of an integrative taxonomic approach to identifying species using morphological and molecular data (Mohamad *et al.*, 2022). Also, electron microscopy of monoclonal cultures is commonly used to describe new diatom species with ultrastructural details. Stepanek & Kociolek (2018) described *H. adumbratoides* and complemented their description with molecular tools. Electron microscopy and molecular information have contributed significantly to the determination of new species of diatoms, taxonomic validations, and the transfer of taxa from one genus to another. For example, taxonomic relocations of taxa have been carried out with the closely related genera *Amphora*, *Cymbamphora*, and *Seminavis* (Levkov, 2009; Stepanek & Kociolek, 2013; 2015, 2018, 2019; Van de Vijver *et al.*, 2014).

Morphometric similarity between taxa of different genera is rare; however, it is not uncommon among species of closely related genera. For example, the morphology *of H. adumbratoides* is very similar to that of *Amphora adumbrata* in terms of the shape of the valve and the fine striae composed of a single elongated areola (Stepanek & Kociolek, 2018). The number of striae was a key characteristic for differentiating these taxa by traditional taxonomy (morphology) (Desianti et al., 2015; Stepanek & Kociolek, 2018). At the molecular level, SSU, *rbc*L, and *psb*C markers were used to identify *H. adumbratoides* (Stepanek & Kociolek, 2018).

In geographical terms, *H. adumbratoides* has been recorded only from the coasts of the Atlantic Ocean, in Florida Bay, Cotton Key, Monroe Country, FL, USA. In this publication, we present morphological characteristics and use molecular identity of this taxon (strain CIBA 160) to report its presence in the Pacific Ocean region from the coastal Balandra lagoon (La Paz Bay) in the Gulf of California, on the southern coast of the Baja California Peninsula, Mexico. It is the second recording but the first interoceanic registration of *H. adumbratoides*. We also register considerable morphological features and morphometry variations in the laboratory-cultured cells.

MATERIALS AND METHODS

Sample collection and morphological observation

Water samples of 50 mL were taken by triplicate from the Balandra lagoon $(24^{\circ}19'9.01''N 110^{\circ}19'18.17'' W)$ near La Paz, Baja California Sur (Figure 1), in December 2018, and brought to the laboratory. The samples were filtered through a 30-µm Nitex mesh and f/2 medium with silicates added to the filtered samples (Guillard, 1975).

Figura 1. Registros actuales de *Halamphora adumbratoides* en el Océano Pacífico y Atlántico (estrellas sólidas). Las figuras insertadas muestran un mapa amplificado del sitio de recolección en la Laguna de Balandra, México.

After two weeks, microalgal cells were isolated in a 1:50 dilution in f/2 medium and streaked on marine agar plates containing the same medium. Single-cell colonies were isolated under low magnification in a microscope, with a sterile hypodermic needle and then transferred to 24-well plates containing 2 ml of culture medium. Two weeks later, the cells were transferred to test tubes with 5 ml of culture medium, and the unialgal culture of isolated cells was examined under light microscopy. Once confirmed, the monoclonal cultures were deposited in CIBNOR's Microalgae Collection under catalog number CIBA 160 (https://www.cibnor.gob.mx/investigacion/colecciones-biologicas/coleccion-de-microalgas) after three reseeding periods. We have a collection of three fixed slides with the skeletons of the cells, that remains in the laboratory.

For light and electron microscopy and molecular analyses, cells were cultured in triplicate in 500mL flasks with 250 mL of medium at $25\pm1^{\circ}$ C, 40 µmol·m⁻²·s⁻¹, 12:12 h, and 35 PSU. At the exponential stage (on the sixth day), separate samples were taken for each analysis. Live and cleaned cells were observed under a Zeiss Axio Lab A1 microscope, and photographs were taken with a Canon EOS Rebel T5i camera (Figure 2). The cells were prepared for scanning electron microscopy (SEM) as indicated previously by López-Fuerte *et al.* (2020). Briefly, the organic matter was eliminated by oxidation, heat-assisted with concentrated nitric acid. The cells were then washed in distilled water to reach a neutral pH. SEM images of the cells were taken with a Hitachi SU3500 electron microscope operating at 10 kV and a 6-mm working distance. A coverslip holding the cells was attached to a 32-mm aluminum stub using conductive carbon tape and coated with around 15 nm of gold in a Hummer 6.2 sputtering unit.

Figure 2. a–c. *Halamphora adumbratoides*, a. live cell showing plastids; b. fluorescence microscopy showing plastids; c. cleaned specimens. Scale bars represent 5 µm.

Figura 2. a–c *Halamphora adumbratoides*, a. células vivas que muestran los cloroplastos; b. microscopía de fluorescencia que muestra los cloroplastos; c. especímenes limpios. Las barras de escala representan 5 µm.

The key morphological characteristics –length, width, and density of the striae– were measured by light and electron microscopy and compared to those reported for *Halamphora adumbratoides* (Stepanek & Kociolek, 2018). The validity nomenclatural status of the name was verified on the Algaebase website (Guiry & Guiry 2023).

DNA extraction, PCR amplification, and sequencing

Cells of the CIBA 160 strain obtained from the exponential stage cultures were utilized to extract genomic DNA by the CTAB method (Doyle, 1991; Herrera *et al.*, 2014). Four regions of DNA were analyzed: fragment of two nuclear genes, the small sub-unit of nuclear gene 18S ribosomal

RNA (SSU), and the large subunit of nuclear gene 28S ribosomal RNA (LSU) were amplified following the PCR conditions described in López-Fuerte *et al.* (2020). A partial sequence of the ribulose bisphosphate carboxylase/oxygenase gene (*rbcL*) from the chloroplast was amplified according to the published protocols (López-Fuerte *et al.*, 2020). Also, the photosystem II CP43 protein gene (*psbC*) was amplified with 30 picomoles of the *psbC+* and *psbC-* primers (Alverson *et al.*, 2007) in 40 μ L of a PCR reaction mixture containing genomic DNA, 0.3 mM dNTPs, 2 mM MgCl₂, 4 μ L of 10X PCR buffer, and 2 units of platinum *Taq* polymerase (InvitrogenTM). The PCR conditions for *psbC* amplification were denaturation at 94°C for 3.30 min, then 35 cycles of 30 s at 94 °C, 50 s at 52 °C, and 80 s at 72 °C. The final extension was for 10 min at 72 °C. Both strands of all markers were sequenced with the amplification primers and an internal primer for the SSU and chloroplast genes (18S 962R, *rbcL*1255, *psb*C857).

We edited the four sequences (SSU, LSU, *psbC*, and *rbcL*) in DNA Baser 4.5 program (http://www.dnabaser.com) and compared the SSU, *rbcL*, and *psbC* sequences to those of *H. adumbratoides* in the GenBank database. The phylogenetic relationship of the CIBA 160 strain was inferred based on the concatenated nucleotide sequences of SSU, LSU, *psbC*, and *rbcL* with 23 *Halamphora* species (Table 1) using the maximum likelihood (ML) method in PAUP 4.0a166 (Swofford, 2002) and Bayesian inference (BI) in MrBayes 3.2.7a (Ronquist *et al.*, 2012). The best fit nucleotide model TIM3+I+G selected according to the BIC criterion in jModeltest 2.1.10 (Darriba *et al.*, 2012; Guindon & Gascuel, 2003) for the concatenated nucleotide sequences was implemented in both analyses. Maximum likelihood analysis was performed with 500 pseudoreplicates under the option of heuristic tree-searching with tree bisection-reconnection branch swapping to generate a majority rule BI consensus tree. Bayesian inference was run for 10 million generations, and a majority rule BI consensus tree was obtained after eliminating 25% of the initial trees using the burn-in option.

Taxa	185	rbcL	psbC	285	Reference
Halamphora adumbratoides AMPH041	MG027270	MG027434	MG027514	NA	Stepanek & Kociolek, 2019
Halamphora adumbratoides CIBA 160	ON714546	ON736839	ON736840	ON714544	This study
Halamphora pellicula AMPH134	MG027316	MG027481	MG027561	MG027401	Stepanek & Kociolek, 2019
Halamphora pellicula AMPH153	MG027320	MG027486	MG027566	MG027407	Stepanek & Kociolek, 2019
Halamphora elongata AMPH001	MG027259	MG027423	MG027503	MG027337	Stepanek & Kociolek, 2019
Halamphora aponina AMPH049	MG027275	MG027439	MG027519	MG027355	Stepanek & Kociolek, 2019
Halamphora aponina AMPH102	MG027296	MG027461	MG027541	MG027381	Stepanek & Kociolek, 2019
Halamphora pseudoholsatica AMPH165	MG027327	MG027493	MG027573	MG027414	Stepanek & Kociolek, 2019

Table 1. Halamphora and Amphora sequences used in the phylogenetic analyses. **Table 1.** Sequencies de Halamphora y Amphora utilizadas en los análisis filogenétic

Polib@tánica

Núm. 58: 17-29

Julio 2024 ISSN electrónico: 2395-9525

Halamphora holsatica AMPH154	MG027321	MG027487	MG027567	MG027408	Stepanek & Kociolek, 2019
Halamphora rushforthii AMPH117	MG027306	MG027471	MG027551	MG027391	Stepanek & Kociolek, 2019
Halamphora coffeaeformis AMPH104	MG027297	MG027462	MG027542	MG027382	Stepanek & Kociolek, 2019
Halamphora pratensis AMPH106	MG027299	MG027464	MG027544	MG027384	Stepanek & Kociolek, 2019
Halamphora isumiensis AMPH164	MG027326	MG027492	MG027572	MG027413	Stepanek & Kociolek, 2019
Halamphora tenucostata AMPH042	MG027271	MG027435	MG027515	MG027350	Stepanek & Kociolek, 2019
Halamphora tenuis AMPH034	MG027269	MG027433	MG027513	MG027348	Stepanek & Kociolek, 2019
Halamphora scatebra AMPH119	MG027308	MG027473	MG027553	MG027393	Stepanek & Kociolek, 2019
Halamphora subturgida AMPH015	MG027260	MG027424	MG027504	MG027338	Stepanek & Kociolek, 2019
Halamphora bicapitata AMPH055	MG027278	MG027442	MG027522	MG027359	Stepanek & Kociolek, 2019
Halamphora nagumoi AMPH166	MG027328	MG027494	MG027574	MG027415	Stepanek & Kociolek, 2019
Halamphora oligotraphenta AMPH009	KJ463451	KJ463481	KJ463511	KP229528	Stepanek & Kociolek, 2014; Stephanek <i>et al.</i> 2015 (28S)
Halamphora veneta AMPH005	KJ463452	KJ463482	KJ463512	KP229530	Stepanek & Kociolek, 2014; Stephanek <i>et al.</i> 2015 (28S)
Halamphora venetoides AMPH017	KJ463453	KJ463483	KJ463513	NA	Stepanek & Kociolek, 2014, 2018
Halamphora coloradiana AMPH025	KJ463450	KJ463480	KJ463510	KP229529	Stepanek & Kociolek, 2014; Stephanek <i>et al.</i> 2015 (28S)
Amphora allanta AMPH129	MG027314	MG027479	MG027559	MG027399	Stepanek & Kociolek, 2019
Amphora commutata AMPH126	KP229526	KP229547	KP229549	KP229545	Stepanek et al., 2015

RESULTS

The length and width recorded for the valves of the laboratory cultured cells of the strain CIBA 160 (*Halamphora adumbratoides*) are 4.1–6.6 and 1.6–2.4 µm, respectively. The number of dorsal and ventral striae for the CIBA 160 strain are 57–60 and 60–70 in 10 µm, respectively. The valve shape is semi-elliptical, and the ends are broadly rounded (Figure 3a–j). The raphe is straight with straight proximal ends, while the distal raphe ends are deflected to hooked dorsally (Figure 3a–b). Externally, two pores are visible at the end of the dorsal raphe ledge at each end of the raphe (Figure 3a–d black arrow), or they may appear fused (Figure 3d white arrow), while internally two, only a single pore is observed (Figure 3e–g, j). Internally, the proximal raphe ends terminated in a broad, fused central helictoglossa (Figure 3e–f, h, white asterisk). The dorsal raphe ledge is present, more accentuated towards the distal end of the valve (Figure 3a–b, black asterisk). The dorsal and ventral striae are continuous through the valve center, slightly radiate (Figure 3a–d), and not resolved in the LM (Figure 2b). Figure 3e–j shows internal views of the deformed valves.

Figure 3. a–d. External view of the valve. a–d showing two distal pores (black arrows). The external and internal proximal raphe ends are not deflected, but the external distal raphe ends are dorsally deflected, a–d, e. Externally, the dorsal and ventral raphe ledges are small but continuous along the length of the valve, e–j. Internal view of the valve.

e, f, h. Internally, the proximal raphe ends terminate in a broad, fused central helictoglossa (white asterisks), e. f, g, h, j. One distal pore is visible (black arrows). f, g, h, i, j. White arrows show the abnormal dorsal raphe ledge. Scale bars correspondence: a, $3 \mu m$, b–j, $2 \mu m$.

Figura 3. a–d Vista exterior de la valva. a–d. se muestran dos poros distales (flechas negras). Los extremos proximales externo e interno del rafe no están desviados, pero los extremos distales externos del rafe están desviados dorsalmente, a-d. e. Externamente, los bordes dorsal y ventral del rafe son pequeños pero continuos a lo largo de la valva, e – j. Vista interna de la valva. e, f, h. Internamente, los extremos proximales del rafe terminan en una helictoglosa central amplia y fusionada (asteriscos blancos), e. f, g, h, j. Se observa un poro distal (flechas negras). f, g, h, i, j. Las flechas blancas muestran el borde dorsal anormal del rafe. Las barras de escala corresponden a: a, 3 μ m, b – j, 2 μ m.

Molecular analysis

We obtained 4,004 bp nucleotide sequences (SSU 1375 bp, *rbcL* 1444 bp, *psbC* 1185 bp; GenBank accession numbers: ON714546, ON736839, ON736840) for the CIBA 160 strain (*H. adumbratoides*) from the Pacific Ocean. Comparison of our sequences to those of the type species from the Atlantic Ocean in GenBank showed 100, 99.8, and 99.5% similarity for SSU, *rbcL*, and *psbC*, respectively. The BI and ML phylogenetic analyses placed the *H. adumbratoides* strains in one clade with *H. pellicula* as a sister clade (Figure 4). This node was supported strongly by the BI (100%) and ML (92%) analyses.

Figure 4. Bayesian tree of the *Halamphora* species based on the partial sequences of SSU, LSU, *psb*C, and *rbc*L. Bootstrap values of maximum likelihood analysis are given below, and posterior probabilities of Bayesian inference are given above the nodes. Nodes supported by less than 50% of Bootstrap values are indicated with the symbol - **Figura 4.** Árbol Bayesiano de las especies de *Halamphora* basado en las secuencias parciales de SSU, LSU, *psb*C y *rbc*L. Los valores Bootstrap del análisis de máxima verosimilitud se dan debajo, y las probabilidades posteriores de la inferencia Bayesiana se dan arriba de los nodos. Los nodos soportados por menos del 50% de los valores de Bootstrap se indican con el símbolo -

DISCUSSION

Accurate identification of a species depends, in principle, on the methods' reliability. Historically, and even today, the identification of a diatom species is based on morphometric aspects observed under light microscopy, which requires extensive taxonomic experience (Mora *et al.*, 2019). The

characterization of certain diatom species is impossible only with this tool because of their small size and inconspicuous diagnostic structures (Li *et al.*, 2018; D. Mann *et al.*, 2020). Fortunately, this issue can be resolved with electron microscopy. However, not all diatom species can be delineated using morphology, especially species with subtle morphological differences (Beszteri *et al.*, 2007; Evans *et al.*, 2007; Malviya *et al.*, 2016). To aid in determining species boundaries among diatoms, molecular tools, such as DNA sequences are applied (An *et al.*, 2017; Beszteri *et al.*, 2007; Evans *et al.*, 2007; Guillard, 2005; D. Mann *et al.*, 2010, 2020; Medlin, 1991). However, this methodology has limitations as it may be unable to resolve the species identity (Malviya *et al.*, 2016) without conspecific and/or closely related species sequences in the nucleotide database. Therefore, morphological, and molecular methods are important in diatoms and should be considered as elements of a synergistic approach to species identification challenges.

After a morphometric review of the images of the laboratory cultured cells of the CIBA 160 strain obtained with both light and electron microscopy, it was not possible to identify this strain with any previously described taxon. However, approximations were made with *Amphora adumbrata* and *Halamphora adumbratoides*. Nevertheless, the morphometric analyses did not allow the taxonomic determination of the CIBA 160 strain as *H. adumbratoides* because the morphology of this strain does not exactly match the original description reported by Stepanek & Kociolek (2018), specifically due to the shape and size of the valve. In the original description of *H. adumbratoides*, the valves were narrow and semi-lanceolate, and the valve ends narrowly rounded to weakly subcapitate in larger specimens. The dorsal and ventral margins, however, do coincide with the original description, as they are arched and straight, respectively (Figure 3a–d). The presence of pores at the end of the dorsal raphe ledge at each end of the raphe was not mentioned in the original description. The axial area, not easily distinguishable in the original description, was not observed in the specimens of the CIBA 160 strain analyzed.

For the length and width of the valves, Stepanek & Kociolek (2018) reported ranges of 8.0-10.0 and $1.5-2.5 \,\mu\text{m}$, while the cells (N=24) of the CIBA 160 strain recorded valve lengths and widths of 4.1-6.6 and $1.6-2.4 \,\mu\text{m}$. Only the length range differed, as it was much shorter than in the original description. The number of dorsal and ventral striae in the CIBA 160 strain almost coincided with the original description, with 56–57 dorsal striae and *ca.* 70 ventral striae in 10 μ m in the original description, while the striae range in 10 μ m for the CIBA 160 strain were 57–60 and 60–70 for the dorsal and ventral striae, respectively.

A possible explanation for the size differences and morphological changes could be the effect of laboratory culturing on the cells of CIBA 160. In diatoms Rose & Cox (2013), Petrova *et al.* (2020) and Mohamad *et al.* (2022) have reported morphological changes in laboratory cultured cells. Diatoms tend to produce small-sized cells over time due to asexual reproduction (Mohamad *et al.*, 2022). This phenomenon has been demonstrated in 15 monoclonal pennate diatoms, but the width and number of striae did not differ from the original description (Mohamad *et al.*, 2022). Our results support the findings of Mohamad *et al.* (2022), and their proposal that the number of striae could be a useful character for species discrimination.

Our molecular analyses confirmed that the CIBA 160 strain belongs to *H. adumbratoides* by showing very high similarity to the sequences of this species from the Atlantic Ocean: 100, 99.8, and 99.5% similarity for SSU, *rbc*L, and *psb*C, respectively. The present study corroborates the results of Mohamad *et al.* (2022) that molecular data remain consistent irrespective of morphological changes in laboratory-cultured diatoms. Phylogenetic analyses of this study were also congruent with the relationship presented by Stepanek & Kociolek (2019) for the *H. adumbratoides* species, which is a sister group to *H. pellicula*.

We have registered morphological abnormalities in the cells of CIBA 160. The helictoglossa (Figure 3h white asterisk) is displaced to the left side of the valve. In contrast, the dorsal raphe ledge is very short and located only to the right of the valve (white arrow) (Figure 3h). The exact

opposite configuration is visible in Figure 3i (white arrow), where the structure is seen to the left of the valve. These abnormalities could be associated with long-term culture of cells in the laboratory (Estes & Dute, 1994; Falasco *et al.*, 2009; Petrova *et al.*, 2020).

In the genera *Amphora* and *Halamphora*, most taxonomic determinations and descriptions of new species are based on morphological analyses of specimens from natural populations (Levkov, 2009; Wachnicka & Gaiser, 2007). However, laboratory-cultured cells were also used for integrative taxonomic studies, combining morphological and molecular data (López-Fuerte *et al.*, 2020; Stepanek *et al.*, 2013, 2015a, 2015b, 2018).

It is important to mention that regardless of the origin of diatoms (natural or cultivated), the morphological description of a species must be accurate and informative, based on as much information as possible. This is because diatoms may present morphological variations throughout their life history, whether in the natural or artificial environment (Rose & Cox, 2013).

In our study, using morphological and molecular data has resulted in the reliable taxonomic identification of the CIBA 160 strain. Our results support using an integrative approach for finegrained integrative taxonomic studies and the importance of laboratory cultures in the diatom taxonomy (Mohamad *et al.*, 2022).

CONCLUSIONS

The taxonomic identification of the CIBA 160 strain as *H. adumbratoides* was not possible based only on morphometric characteristics. This was due mainly to differences in the valve leaflet length and the presence of pores at the extremes of the valve on the raphe channel. Molecular analyses, however, allowed us to determine species identity with reference DNA sequences deposited in GenBank. Using DNA sequence data is important for cryptic, pseudo-cryptic diatom species and diatoms in general. Integrated approaches can play a vital role in discovering species with broad morphological variations.

ACKNOWLEDGEMENTS

We thank James M. Ehrman of the Digital Microscopy Facility at Mount Allison University for the SEM image, Joaquín Rivera Rosas for the map image, and Paul Kersey for the English review of this manuscript. GM and MCLV thank CIBNOR for the internal projects and the facilities provided to carry out this work. FOLF thanks the SNII-CONAHCYT program. Finally, we acknowledge three anonymous reviewers for their valuable comments.

LITERATURE CITED

- Alverson, A., Jansen, R., & Theriot, E. (2007). Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. *Molecular Phylogenetics and Evolution*, 45, 193–210. https://doi.org/10.1016/j.ympev.2007.03.024
- An, S. M., Choi, D. H., Lee, J. H., Lee, H., & Noh, J. H. (2017). Identification of benthic diatoms isolated from the eastern tidal flats of the Yellow Sea: Comparison between morphological and molecular approaches. *PLoS ONE*, *12*(6). https://doi.org/10.1371/journal.pone.0179422

Armbrust, E. V. (2009). The life of diatoms in the world's oceans. Nature, 459(7244), 185-192.

https://doi.org/10.1038/nature08057

- Beszteri, B., John, U., & Medlin, L. K. (2007). An assessment of cryptic genetic diversity within the *Cyclotella meneghiniana* species complex (Bacillariophyta) based on nuclear and plastid genes, and amplified fragment length polymorphisms. *European Journal of Phycology*, 42(1), 47–60. https://doi.org/10.1080/09670260601044068
- Darriba, D., Taboada, G., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. *Nature Methods*, 9, 772. https://doi.org/10.1038/nmeth.2109
- Desianti, N., Potapova, M., & Beals, J. (2015). Examination of the type materials of diatoms described by Hohn and Hellerman from the Atlantic Coast of the USA. *Diatom Research*, 30, 1–24. https://doi.org/10.1080/0269249X.2014.1000020
- Doyle, J. (1991). DNA Protocols for Plants BT. In G. M. Hewitt, A. W. B. Johnston, & J. P. W. Young (Eds). *Molecular Techniques in Taxonomy*. NATO ASI Series (Series H: Cell Biology), vol 57. Springer Berlin Heidelberg (pp. 283–93). https://doi.org/10.1007/978-3-642-83962-7 18
- Estes, A., & Dute, R. (1994). Valve abnormalities in diatom clones maintained in long-term culture. *Diatom Research*, 9, 249–58. https://doi.org/10.1080/0269249X.1994.9705305
- Evans, K., Wortley, A. H., & Mann, D. (2007). An Assessment of Potential Diatom "Barcode" Genes (cox1, rbcL, 18S and ITS rDNA) and their Effectiveness in Determining Relationships in *Sellaphora* (Bacillariophyta). *Protist*, 158, 349–364. https://doi.org/10.1016/j.protis.2007.04.001
- Falasco, E., Bona, F., Ginepro, M., Hlubikova, D., Hoffmann, L., & Ector, L. (2009). Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. *Water S.A*, 35, 595–606. https://doi.org/10.4314/wsa.v35i5.49185
- Guillard, R. R. L. (1975). Culture of Phytoplankton for Feeding Marine Invertebrates. In M.L. Smith & M.H. Chanley (Eds.), *Culture of Marine Invertebrate Animals* (pp. 29–60). Plenum Press. https://doi.org/10.1007/978-1-4615-8714-9_3
- Guillard, R. R. L. (2005). Purification methods for microalgae. In R. A. Andersen (Ed.), *Algal culturing techniques* (pp. 117–132). Elsevier Academic Press. Phycological Society of America.
- Guiry, M. D. & Guiry, G. M. (2023) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 8 may 2023.
- Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52, 696–704. https://doi.org/10.1080/10635150390235520
- Herrera, A., Medlin, L., Murugan, G., Sierra, A., Cruz, A., & Hernandez Saavedra, N. (2014). Are *Prorocentrum hoffmannianum* and *Prorocentrum belizeanum* (DINOPHYCEAE, PROROCENTRALES), the same species? An integration of morphological and molecular data. *Journal of Phycology*, 51. https://doi.org/10.1111/jpy.12265
- Levkov, Z. (2009). *Amphora* sensu lato. In H. Lange-Bertalot (Ed.), *Diatoms of Europe: Diatoms of the Europe inland waters and comparable habitats* (p. 916). A.R.G. Gantner Verlag K. G.
- Li, C. L., Witkowski, A., Ashworth, M., Dąbek, P., Sato, S., Zgłobicka, I., Witak, M., Khim, J. S., & Kwon, C. J. (2018). The morphology and molecular phylogenetics of some marine diatom taxa within the Fragilariaceae, including twenty undescribed species and their relationship to *Nanofrustulum*, *Opephora* and *Pseudostaurosira*. *Phytotaxa*, 355(1), 1–104. https://doi.org/10.11646/phytotaxa.355.1
- López-Fuerte, F. O., Sala, S. E., Lora-Vilchis, M. C., & Murugan, G. (2020). Halamphora siqueirosii (Bacillariophyta), a new diatom species isolated from a hypersaline evaporation pond in Baja California Peninsula, Mexico. *Phytotaxa*, 451(2), 132–144. https://doi.org/10.11646/phytotaxa.451.2.3
- Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., Wincker, P., Iudicone, D., De Vargas, C., Bittner, L., Zingone, A., & Bowler, C. (2016). Insights into global

<u>Polib@tánica</u>

diatom distribution and diversity in the world's ocean. *Proceedings of the National Academy of Sciences of the United States of America*, 113(11), E1516–E1525. https://doi.org/10.1073/PNAS.1509523113/DCSUPPLEMENTAL/PNAS.1509523113.S APP.PDF

- Mann, D. G. (1999). The species concept in diatoms. *Phycologia*, 38(6), 437–495. https://doi.org/10.2216/i0031-8884-38-6-437.1
- Mann, D., Sato, S., Trobajo, R., Vanormelingen, P., & Souffreau, C. (2010). DNA barcoding for species identification and discovery in diatoms. *Cryptogamie Algologie*, *31*, 557–577.
- Mann, D., Trobajo, R., Sato, S., Li, C., Witkowski, A., Rimet, F., Ashworth, M., Hollands, R., & Theriot, E. (2020). Ripe for reassessment: A synthesis of available molecular data for the speciose diatom family Bacillariaceae. *Molecular Phylogenetics and Evolution*, 158, 106985. https://doi.org/10.1016/j.ympev.2020.106985
- Medlin, L. K., Elwood, H. J., Stickel, S., & Sogin, M. L. (1991). Morphological and genetic variation within the diatom *Skeletonema costatum* (Bacillariophyta): evidence for a new species, *Skeletonema pseudocostatum*. *Journal of Phycology*, 27, 514–524.
- Mohamad, H., Mora, D., Skibbe, O., Abarca, N., Deutschmeyer, V., Enke, N., Kusber, W., Zimmermann, J., & Jahn, R. (2022). Morphological variability and genetic marker stability of 16 monoclonal pennate diatom strains under medium-term culture. *Diatom Research*, 37, 307–328. https://doi.org/10.1080/0269249X.2022.2141346
- Mora, D., Abarca, N., Proft, S., Grau, J., Enke, N., Jiménez, J., Skibbe, O., Jahn, R., & Zimmermann, J. (2019). Morphology and metabarcoding: a test with stream diatoms from Mexico highlights the complementarity of identification methods. *Freshwater Science*, 38, 448–464. https://doi.org/10.1086/704827
- Onuma, R., Mishra, N., & Miyagishima, S. (2017). Regulation of chloroplast and nucleomorph replication by the cell cycle in the cryptophyte *Guillardia theta*. *Scientific Reports*, 7(2345). https://doi.org/10.1038/s41598-017-02668-2
- Petrova, D., Bedoshvili, Y., Zakharova, Y., Volokitina, N., Likhoshway, Y., & Grachev, M. (2020). Changes in valve morphology of two pennate diatom species during long-term culture. *Acta Biologica Sibirica*, 6, 669–678. https://doi.org/10.3897/abs.6.e57888

Recibido: 23/noviembre/2023

Aceptado: 21/junio/2024

- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M., & Huelsenbeck, J. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*, 61(3), 539– 542. https://doi.org/10.1093/sysbio/sys029
- Rose, D., & Cox, E. J. (2013). Some diatom species do not show a gradual decrease in cell size as they reproduce. *Fundamental and Applied Limnology*, *182*(2), 117–122. https://doi.org/10.1127/1863-9135/2013/0406
- Stepanek, J. G., & Kociolek, J. P. (2013). Several new species of *Amphora* and *Halamphora* from the western USA. *Diatom Research*, 28(1), 61–76. https://doi.org/10.1080/0269249X.2012.735205
- Stepanek, J. G., & Kociolek, J. P. (2014). Molecular phylogeny of Amphora sensu lato (Bacillariophyta): an investigation into the monophyly and classification of the amphoroid diatoms. Protist, 165(2), 177–195. https://doi.org/10.1016/j.protis.2014.02.002
- Stepanek, J. G., & Kociolek, J. P. (2015). Three new species of the diatom genus Halamphora (Bacillariophyta) from the prairie pothole lakes region of North Dakota, USA. *Phytotaxa*, 197, 27–36. https://doi.org/10.11646/phytotaxa.197.1.3
- Stepanek, J. G., Mayama, S., & Kociolek, J. P. (2015). Description and phylogenetic position of *Amphora aliformis* (Bacillariophyta), a new species from Tokyo Bay. *Phycologia*, 54, 78– 86. https://doi.org/10.2216/14-081.1
- Stepanek, J. G., & Kociolek, J. P. (2018). Amphora and Halamphora from coastal and inland waters of the United States and Japan, with the description of 33 new species. In Lange-Bertalot, H. & Kociolek, J. P. Bibliotheca Diatomologica, volume 66, Gebr. Borntraeger Verlagsbuchhandlung, 260 pp.
- Stepanek, J. G., & Kociolek, J. P. (2019). Molecular phylogeny of the diatom genera *Amphora* and *Halamphora* (Bacillariophyta) with a focus on morphological and ecological evolution.

Journal of Phycology, 55. https://doi.org/10.1111/jpy.12836

- Swofford, D. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. In version 4.0b10 edn: Vol. Version 4. Sinauer, Associates, Sunderland. https://doi.org/10.1111/j.0014-3820.2002.tb00191.x
- Van de Vijver, B., Kopalova, K., Zidarova, R., & Levkov, Z. (2014). Revision of the genus Halamphora (Bacillariophyta) in the Antarctic Region. Plant Ecology and Evolution, 147, 374–391. https://doi.org/10.5091/plecevo.2014.979
- Wachnicka, A., & Gaiser, E. (2007). Characterization of *Amphora* and *Seminavis* from South Florida, USA. *Diatom Research*, 22(2), 387–455. https://doi.org/10.1080/0269249X.2007.9705722