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Portada

BA vertical cultivation system composed of uniform 

container modules housing a variety of herbaceous and 

foliage plant species. The stratified arrangement optimizes 

space use and enhances light capture efficiency, while the 

morphological heterogeneity of the plants reflects phenotypic 

plasticity under intensive cultivation conditions in urban 

environments. This system represents a form of green 

infrastructure aimed at sustainable plant production and 

microclimate improvement in metropolitan settings.

por/by 

Rafael Fernández Nava

Sistema de cultivo vertical integrado por módulos 

contenedores uniformes que albergan diversas especies 

herbáceas y foliares. La disposición estratificada optimiza 

el uso del espacio y favorece la eficiencia en la captación 

de luz, mientras que la heterogeneidad morfológica de las 

plantas evidencia la plasticidad fenotípica asociada a 

condiciones de cultivo intensivo en ambientes urbanos. 

Este sistema representa una forma de infraestructura verde 

orientada a la producción vegetal sustentable y a la mejora 

microclimática en entornos metropolitanos.
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Comparación de tasas de respiración del suelo en ecosistemas agrícola, agostadero y urbano en una 
zona semiárida en Juárez, Chihuahua, México 

 
Comparison of soil respiration rates in agricultural, rangeland, and urban ecosystems at semiarid 
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RESUMEN: La actividad de los microorganismos y raíces de la vegetación generan el 
proceso de respiración en el suelo al liberar CO₂ a la atmósfera, por ello es importante 
cuantificar los impactos en los ecosistemas semiáridos. El objetivo fue comparar las 
tasas de respiración del suelo en tres ecosistemas: cultivo agrícola, agostadero y parque 
urbano, correlación con propiedades físicas y químicas de los suelos. Las muestras de 
suelo se colectaron a una profundidad de 0 a 15 cm, en cinco sitios con cinco repeticiones 
en cada ecosistema. Las variables fueron el contenido de partículas minerales, densidad 
aparente, porosidad, materia orgánica, alcalinidad, salinidad y la respiración del suelo. 
Esta última cuantifico el C-CO2 con un método basado en cambios de la conductividad 
eléctrica del KOH 0.5 M en incubaciones aeróbicas. Diferencias significativas fueron 
detectadas para arena, limo, salinidad, materia orgánica y respiración, mientras que 
densidad aparente, arcilla y pH fueron no significativos entre ecosistemas. La tasa de 
respiración (mg C-CO2 kg-1 día-1) en el suelo fue menor para el Sitio sin cultivo que 
presentó menor contenido de materia orgánica y mayor espacio poroso. El suelo con 
cultivo agrícola mostró más respiración que el sin cultivo, pero menos que el suelo de 
parque urbano, el cual duplicó al suelo agrícola, ya que presentó menor salinidad y 
mayor cantidad de materia orgánica. Correlaciones significativas se encontraron entre 
las tasas de respiración con el contenido de materia orgánica y el porcentaje de arena. 
Las tendencias de respiración del suelo observadas entre los ecosistemas contribuyen al 
entendimiento de la emisión de CO2 en zonas semiáridas e impacto en el cambio 
climático. 
Palabras clave: Conductividad eléctrica, dióxido de carbono, materia orgánica, 
alcalinidad, textura.     
ABSTRACT: The activity of microorganisms and vegetation roots generates soil 
respiration by releasing CO₂ into the atmosphere. This process requires an assessment to 
quantify the impacts on semiarid ecosystems. The objective was to compare soil 
respiration rates in three ecosystems: agricultural, rangeland, and urban park, also the 
correlation with soil physical and chemical properties. Soil samples were collected at a 
depth of 0 to 15 cm at five sites with five replicates in each ecosystem. The variables 
evaluated were mineral particle content, bulk density, porosity, organic matter, 
alkalinity, salinity, and soil respiration.  The C-CO2 emission was assessed on change in 
the electrical conductivity measurement of 0.5% KOH M in aerobic incubations. 
Significant differences were detected for sand, silt, salinity, organic matter and soil 
respiration, but bulk density, clay, and pH did not present significant differences between 
ecosystems. The lowest soil respiration rate (mg C-CO2 kg-1 día-1) was observed in the 
rangeland, which in turn had a lower organic matter content, and lower porosity. The 
agricultural soil showed more respiration than the rangeland soil, but less than the urban 
park soil, which was twice as high as the agricultural soil, and presented lower salinity 
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and higher amounts of organic matter. Significant correlations were found between respiration 
rates and the organic matter content and sand percentage. The trends in soil respiration observed 
between ecosystems contribute to the understanding of CO2 emissions in semi-arid areas, and 
impact on climate change. 
Key words: Electrical conductivity, carbon dioxide, organic matter, alkalinity, texture. 
 
 
INTRODUCCIÓN   
 
El ciclo global del carbono relacionado con el problema de cambio climático es fundamental en 
ecosistemas de zonas áridas y semiáridas donde la respiración del suelo es un componente crítico 
y representa la liberación de dióxido de carbono (CO₂) del suelo a la atmósfera, pues el 47.2% de 
la superficie del planeta es cubierto por estos ecosistemas (Lal, 2004; Mann et al., 2024). El 
carbono (C) suele encontrarse en dos formas principalmente, como carbono orgánico e 
inorgánico. El C orgánico proviene de restos vegetales, animales y de microorganismos, es 
almacenado en forma de materia orgánica, la cual se encuentra protegida por agregados del suelo 
y minerales que favorecen su conservación a través del tiempo.  
El C inorgánico se encuentra en forma de carbonatos, sobre todo en regiones áridas y está 
condicionado por factores como el pH y el manejo agrícola (Lal, 2016; Luo et al., 2017; Gross 
& Harrison, 2019; Ferdush & Paul, 2021 Georgiou et al., 2022; Huang et al., 2024). El C llega 
al suelo principalmente a través de restos de raíces, hojas y exudados de raíces, posteriormente 
este carbono es utilizado por microorganismos que descomponen la materia orgánica y liberan 
CO2 a la atmósfera (Gross &Harrison, 2019; Basile et al., 2020; Wang et al., 2022; Morrissey et 

al., 2023; Wu et al., 2023).  
El carbono se encuentra estabilizado gracias a la formación de complejos órgano-minerales y la 
encapsulación en micro agregados que lo protegen de la descomposición microbiana. Sin 
embargo, el carbono es propenso a perderse debido a cambios en el uso del suelo, el aumento de 
la temperatura y la humedad, favorecen la desestabilización del carbono, liberándolo en forma de 
CO2 (Lal, 2016; Balesdent et al., 2018; Bailey et al, 2019; Lehmann et al., 2020; Basile et al., 
2020; Witzgall et al., 2021; Georgiou et al., 2022). 
La respiración del suelo es el proceso mediante el cual el dióxido de carbono es liberado desde el 
suelo hacia la atmósfera, siendo este el resultado de la actividad de raíces y microorganismos. Es 
un componente esencial en el ciclo global del carbono y esta influenciada por factores 
ambientales, biológicos y el manejo agrícola del suelo (Hursh et al., 2017). Factores como el 
cambio climático y el manejo agrícola, influyen en este proceso ya que pueden aumentar o 
disminuir estas tasas de respiración ya que afectan la oxigenación, la biomasa microbiana y la 
disponibilidad de nutrientes (Zou et al., 2024). 
La respiración del suelo genera el CO2 cómo resultado de la actividad microbiana, proceso 
radicular de las plantas, acción de la fauna edáfica y de procesos no biológicos (Ryan & Law, 
2005; Brady & Weil, 2017). Este flujo de CO2 refleja la actividad biológica del suelo dado por 
organismos autótrofos y heterótrofos que es posible medirse y modelarse, de tal forma que se 
interpreta la capacidad para descomponer la materia orgánica través del proceso de la 
mineralización del nitrógeno, entre otros nutrientes, al interpretarse como un indicador clave de 
la salud y funcionalidad de los ecosistemas (Ryan & Law, 2005; Campuzano et al., 2021).  
Debido a que el suelo alberga una de las mayores reservas de carbono terrestre, las pequeñas 
variaciones en los flujos de respiración pueden tener efectos significativos a una escala global 
(Lal, 2004). Dado que la respiración del suelo es un indicador clave de su salud y el 
funcionamiento de los ecosistemas, es de valiosa utilidad cuantificar las tasas de respiración, ya 
que varían significativamente entre las diferentes regiones y usos del suelo como consecuencia 
de múltiples factores tales como diferencias en las condiciones ambientales, la vegetación y las 
prácticas de manejo (Zhou, et al., 2011).  
La tasa de respiración del suelo está influenciada por factores ambientales tales cómo la 
temperatura, la humedad, el pH, la textura, la cantidad y calidad de materia orgánica, la 
disponibilidad de nutrientes y la estructura del suelo, pues la respiración como producto de la 
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actividad microbiana se ve influenciada por diversos factores bióticos y abióticos, entre los que 
destacan el uso del suelo y el tipo de vegetación (Campuzano et al., 2021; Campuzano et al., 
2025). Sin embargo, existe poca información donde se comparen con análisis exhaustivo los 
cambios en la respiración del suelo en regiones templadas, tropicales y áridas, incluidos parques 
urbanos, suelos agrícolas y suelos no cultivados o de agostadero (Lai, et al., 2012; Lal & Stewart, 
2017). Particularmente, en ecosistemas áridos y semiáridos, cómo el desierto Chihuahuense, este 
proceso adquiere especial relevancia, ya que constituye una fracción dominante de la respiración 
total del ecosistema, ya que su comportamiento se encuentra vinculado a las condiciones 
climáticas, cómo la temperatura del aire, la humedad del suelo y el déficit de presión de vapor 
(Celaya & Castellanos, 2011; Campuzano et al., 2021).  
Los procesos como la respiración y la mineralización de materia orgánica están muy relacionados 
y dependen de condiciones ambientales similares a las que afectan la actividad de los 
microorganismos del suelo, por ello la temperatura, la humedad, el pH y la disponibilidad de 
materia orgánica son cruciales en las tasas de iones inorgánicos liberados incluido el CO2 (Flores-
Márgez et al., 2010; Brady, 2017).  La interacción entre la respiración del suelo y la dinámica del 
nitrógeno refleja la relación entre el ciclo del carbono y el ciclo del nitrógeno, sobre todo en 
ambientes áridos, donde los pulsos breves de humedad activan rápidamente la actividad 
microbiana, la descomposición de materia orgánica y la liberación simultánea de CO2 (Havlin et 
al., 1999).  
Con respecto a la medición de CO2 en suelos, propuestas iniciales han sido basadas en el método 
de la conductividad eléctrica y NaOH como técnica precisa y rápida, la cual se aplicó en estudios 
para evaluar las tasas de respiración microbiana en suelos y descomposición de materia orgánica 
entre varias comunidades de plantas (Wollum & Gómez, 1970). Además, existen algunas técnicas 
portátiles y económicas recientes que han sido desarrolladas para el monitoreo del CO2, las cuales 
incluyen cámaras de trampa alcalina con KOH y sensores tanto en condiciones de laboratorio 
como en campo para su aplicación en sistemas agrícolas y otros ambientes naturales  (Batterman, 
et al., 2022; Irving et al., 2024). También, se han propuesto metodologías basadas en la ecuación 
general de los gases, presión y temperatura para facilitar la compresión de modelos matemáticos 
en la cuantificación de CO2 y otros gases de efecto invernadero (Montoya et al., 2024; Ryan & 
Law, 2005). 
La emisión de C como CO2 (C-CO2) que es la magnitud de la respiración del suelo, han sido 
reportadas para diferentes ecosistemas donde ciertos estudios fueron realizados en suelos áridos 
y semiáridos, mostrando una amplia variación, en parte por las diferencias en condiciones 
ambientales, las técnicas de medición y el manejo de los suelos. Las tasas de respiración para 
algunos ecosistemas como bosque tropical reportan un rango de 4.3 a 9.8 μmol CO₂ m⁻² s⁻¹ (Sotta 
et al., 2004; Ohashi et al., 2008), en pastizales de 0.3 a 0.6 μmol CO₂ m⁻² s⁻¹ (Chamizo et al., 
2022; Silletta et al., 2019), en suelo agrícola de 0.3 a 0.5 μmol CO₂ m⁻² s⁻¹ (Zou et al., 2024; Cui 
& Tan, 2022) y para suelo con biocostras de 0.2 a 0.6 μmol CO₂ m⁻² s⁻¹ (Chamizo et al., 2022), 
donde los factores dominantes en el proceso de respiración edáfica son la temperatura, humedad, 
raíces, microbiota y nitrógeno. 
También, Ayala-Niño et al., (2018) muestran valores muy bajos, mientras que Gutiérrez & 

Mendoza (2022) reportan tasas de hasta 24.2 mg C-CO₂ kg-1 día-1 para matorral desértico del 
desierto Chihuahuense, seguido de Campuzano et al., (2025) con 12.5 mg C-CO₂ kg-1 día-1 en 
Coahuila, México. Por su parte (Zhang et al., 2009) encontraron tasas de 1.91 a 14.52 mg C-CO₂ 
kg-1 día-1 en Kelayami, China, mientras que Yu (2021)  encontraron entre 2.3 y 13.5 mg C-CO₂ 
kg-1 día-1 en el mismo país. Estas referencias muestran que la respiración del suelo en regiones 
áridas y semiáridas puede fluctuar enormemente y sirven de base referencial para los estudios 
edáficos principalmente en las zonas áridas en México, donde los suelos se caracterizan por tener 
bajo contenido de materia orgánica y nitrógeno total, alcalino y con variados niveles de salinidad 
(Cueva, et al., 2016; Mendoza & Flores, 2022). Estas características fisicoquímicas predominan 
en los suelos más comunes en el norte del estado de México, que cubren el desierto Chihuahuense, 
donde sobresalen los grupos: Calcisol, Gypsisol, Arenosol, Solonetz y Regosol, entre otros 
(WRB, 2015; INEGI, 2017). Con respecto a suelos de parques urbanos, es común el riego con 
aguas tratadas y se ha encontrado aumento de materia orgánica, N total y P disponible, una mejora 
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en la actividad de los microorganismos, sin efecto en salinidad y ligero aumento de pH (Chen et 

al., 2015; García et al., 2020).  
Otras mejoras en la calidad del suelo son el incremento en la estabilidad de micro agregados en 
la parte superficial debido al aumento de materia orgánica, así como mejoras en las tasas de 
infiltración y porosidad (Salacain et al., 2019; Kranz et al., 2020). Con respecto a la respiración 
de suelo cuantificada como la actividad microbiana que emite C del CO2 se han reportado valores 
de 0.1 a 38.4 y 1.51 a 4.87 g C/cm2/día equivalente a 0.77 y 295 mg C kg-1 día-1 y 11.6 a 37.5 mg 
C kg-1 día-1 para suelos agrícolas y de agostadero, respectivamente (Cuevas et al., 2016), mientras 
que Li et al. (2024) indican entre 1 a 6 µmol C-CO2 m-2 s-1, es decir, 7.98 a 47.89 mg C-CO2 kg-1 
día-1. El conocimiento de las emisiones de C-CO2 a la atmósfera por parte de los suelos en zonas 
semiáridas se considera fundamental, por ello se llevó a cabo este estudio con el objetivo de 
evaluar la respiración del suelo en tres ecosistemas de una región semiárida y relacionarla con 
parámetros físicos y químicos del suelo.  
 
 
MÉTODOS 
 
Sitios de estudio   
Los Sitios  de estudio en suelo cultivado agrícola y sin cultivar de monte denominado agostadero 
con vegetación xerofita se ubicaron al sur del municipio de Juárez a 31° 22’ 08” de Latitud Norte 
y 106° 27´ 04” Longitud Oeste, así como otra área en 31° 20’ 52” de Latitud Norte y 106° 29´ 
57” de Longitud Oeste, mientras el suelo urbano fue en Ciudad Juárez, Chihuahua en el parque 
“El Chamizal” que se localiza a 31° 45’ 26” de Latitud Norte y 106° 27´ 31” de Longitud Oeste, 
altitud promedio de 1 200 msnm (Figura 1, Google earth®, 2025). Los cinco suelos con cultivo 
agrícola incluidos en este estudio fueron seleccionados al tener especies cultivadas   
representativas del área como alfalfa, chile, calabacita, cilantro y nogal, aunque al momento del 
muestreo (marzo 2025) estaban con rastreo, es decir no sembrados todavía, excepto el nogal. Las 
áreas sin cultivar de monte estuvieron adyacentes en 50 m a los suelos de cultivo agrícola, esto 
con el fin de evaluar y comparar el impacto del manejo del suelo. La vegetación predominante 
en los Sitios de agostadero (sin cultivo) fueron: gobernadora (Larrea tridentata), mezquite 
(Propsopis juliflora) y zacates de zonas áridas. Los grupos de suelo en las áreas agrícolas y sin 
cultivar fueron Gypsisol (INEGI, 2017) mientras que en el Sitio del parque urbano el suelo fue 
grupo Calcisol   (FAO, 2016; INEGI, 2017).  
El clima en el área de estudio es clasificado como BWx, desértico muy árido con lluvias poco 
abundantes que pueden presentarse en cualquier época del año (García, 2004). El clima es 
templado extremoso con invierno, otoño y primavera secos, temperatura media anual de 17 oC, 
mínima extrema de -23 oC en enero y máxima extrema de 44 oC en julio, precipitación media 
anual de 217 mm y evaporación de 2 634 mm (INIFAP, 1991). 
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Figura 1. Ubicación de los sitios de muestreo de suelos agrícola, agostadero y urbano en el norte del estado de 
Chihuahua. www.Google earth®. Elaboro Juan P. Flores M.  
https://www.inegi.org.mx/app/mapa/espacioydatos/default.aspx 
Figure 1. Location of sampling sites in agriculture, rangeland and urban soils at north Chihuahua state. www.Google 
earth®. Prepared by Juan P. Flores M. 
https://www.inegi.org.mx/app/mapa/espacioydatos/default.aspx 

  
 
Muestreo y análisis de suelo 
El muestreo del suelo fue mediante el método en zig-zag en cinco Sitios (parcelas) con cultivo 
agrícola y cinco Sitios sin cultivo de monte agostadero, el cual consistió en recolectar nueve 
submuestras a una profundidad de 0 a 15 cm en cada sitio, los cuales variaron en superficie de 1 
a 5 ha, debido a la baja heterogeneidad observada en campo en parcelas pequeñas, donde las 
normas en materia de muestreo de suelo indican que son suficientes ocho submuestras por parcela 
(SEMARNAT, 2000). El muestreo del suelo en el Sitio del parque urbano también fue con el 
método en zig-zag, por triplicado en cuatro Sitios, ubicados como secciones del parque 
representativos con una superficie promedio de 1 ha cada Sitio, así se colectaron nueve 
submuestras por Sitio. Se utilizó una barrena de acero inoxidable donde se colectó un kilogramo 
de suelo que se colocó en bolsas de plástico con su respectiva etiqueta, las muestras fueron 
transportadas al laboratorio de Ciencias Ambientales de la UACJ, para ser secadas a temperatura 
ambiente, después se procedió a molienda y tamizado con un molino marca Humboldt® 
tamizadas en criba de 2 mm y almacenadas para su análisis. El contenido de humedad del suelo 
se llevó a cabo mediante el método gravimétrico que se basa en diferencias de peso húmedo y 
peso seco (SEMARNAT, 2000).  La densidad aparente fue a través de la colecta de muestras de 
suelo con un cilindro de aluminio en campo (5 x 8 cm), luego se secó la muestra en estufa y los 
cálculos fueron al dividir el peso seco entre el volumen del cilindro. La porosidad o espacio 
poroso (φ) fue estimado con la fórmula: φ = 1 − (ρb/ρs)*100, donde ρb es la densidad aparente y 
ρs es la densidad real con valor constante de 2.65 g cm-3 (Ortiz, 2010). 
El análisis granulométrico o de textura del suelo fue con el método del hidrómetro de Bouyoucos 
(Bouyoucos, 1962;  SEMARNAT, 2000). La alcalinidad del suelo fue medida mediante el pH 

https://www.inegi.org.mx/app/mapa/espacioydatos/default.aspx
https://www.inegi.org.mx/app/mapa/espacioydatos/default.aspx
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con el método de la relación suelo:agua, 1:2, y la concentración de sales solubles a través de la 
conductividad eléctrica con el método de relación suelo:agua 1:5, con un instrumento marca 
Thermo electron Co. Orion 3 (SEMARNAT, 2000;CP, 2007). El valor de conductividad se 
multiplico por cinco para aproximar al valor obtenido con pasta de saturación del suelo, ya que 
se ahorra tiempo y recursos con el método 1:5. El contenido de materia orgánica del suelo fue 
analizado mediante el método de Walkley y Black (Aguilar, et al., 1987; Bremner, 1996 ;Nelson 
& Sommers, 1996).  
El análisis de respiración de suelo fue con el método que determinar el CO2 emitido por la 
actividad microbiana en condiciones de laboratorio mediante incubaciones aeróbicas de 
respirometría con trampa alcalina de cámara sellada y medición de la conductividad eléctrica del 
KOH 0.5M (Batterman, et al., 2022). La técnica fue propuesta por el Cornell Soil Health 
Laboratory, basada en la medición de la conductividad eléctrica de las sustancias utilizadas en el 
sistema como el KOH y K2CO3 producido en la reacción. La emisión de C-CO2 fue medida al 
utilizar 20 g de suelo, los cuales fueron humedecidos por capilaridad según su capacidad de 
retención de agua previamente calculada, así hasta llegar al punto de saturación de cada muestra 
de suelo. Después, el suelo fue colocado en una charola de aluminio de 4 cm de diámetro 
perforada, permitiendo el drenaje y la aireación del suelo. Está charola se introdujo en un frasco 
de vidrio de 10 cm de altura por 5 cm de diámetro; se colocó un papel filtro en la base, luego 
encima se colocó la muestra de suelo, y sobre está un trípode de plástico que sostenía un vaso de 
precipitados con 9 mL de KOH 0.5 M (Figura 2). Las muestras fueron incubadas durante cuatro 
días, con cuatro periodos como repeticiones, se registró la temperatura durante cada periodo, al 
cuarto día de incubación se midió la conductividad eléctrica del K2CO3 liberado en la reacción.  

 
Figura 2. Procedimiento de preparación del suelo e incubación mediante trampa alcalina para evaluar la respiración 
de suelo. Método (Batterman, et al., 2022). Diagrama elaborado por Alejandra Valles 
Figure 2. Procedure for soil preparation and incubation using an alkaline trap to evaluate soil respiration. Method 
(Batterman, et al., 2022). Diagram prepared by Alejandra Valles 
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Análisis estadístico 
Los análisis estadísticos consistieron en revisar la distribución normal de datos (Kolmogorov-
Smirnov), obtener los parámetros descriptivos, y regresión correlación lineal y no lineal entre las 
variables estudiadas, análisis de varianza para un diseño experimental completamente al azar con 
efecto anidado donde los Sitios se analizaron dentro de cada  ecosistema (cultivado agrícola, sin 
cultivar tipo agostadero y parque urbano), y así determinar el efecto principal para cada factor de 
variación como fueron: el sitio, el ecosistema y el sitio dentro de cada ecosistema para las 
variables evaluadas en el estudio. También se realizaron las pruebas de comparación múltiple de 
promedios con la técnica Tukey al 0.05 con el programa SPSS® versión 24.0. 
 
 
RESULTADOS 
 
Propiedades de los suelos 
De acuerdo con los contenidos de partículas minerales, la textura de los suelos presentó una 
variación considerable que pueden ser clasificados desde francos, franco-arenosos y franco-
arcillosos, con un rango mayor en los porcentajes de arena (Tabla 1). La densidad aparente de los 
suelos estuvo entre 1 y 1.6 g cm-3 y el espacio poroso entre 42 y 62%, lo cual se asocia con las 
texturas observadas, ya que ambas propiedades físicas generalmente se encuentran íntimamente 
ligadas. La alcalinidad medida a través del pH, mostró valores clasificados desde neutros (6.6) a 
medianamente alcalinos (8.4) con un rango de 1.76, mientras que la concentración de sales 
solubles medida mediante la conductividad eléctrica presentó una variación considerable con 
rango de 25.2 dS m-1, es decir clasificado como muy ligeramente salino (1.5 dS m-1) a muy 
fuertemente salino (26.7 dS m-1). El contenido de materia orgánica fluctúo entre 1.9 y 3.5, 
considerado de bajo a medio, aunque predominaron niveles bajos. La respiración del suelo 
(Cuadro 1) medida a través de la emisión de C-CO2 como producto de la actividad microbiana 
también mostró una amplitud considerable de 112 (mg C-CO2 kg-1 día-1), lo cual coincide con la 
heterogeneidad de las variables reportadas para los suelos de los sitios estudiados. 
 
 

Tabla 1. Estadísticos descriptivos de las propiedades físicas, químicas y biológicas de los suelos. 
Table 1. Descriptive statistics for soil physical, chemical and biological properties. 

Variable Mín. Media Máx. E.E. * Rango 
Densidad aparente (g cm-3)   1.007   1.322   1.558 0.016    0.551 

Porosidad (%) 42.20 49.80 62.00 0.69  19.80 

Arena (%) 39.48 63.67 93.06 2.66  53.57 

Limo (%)   2.00 27.19 50.00 2.18  48.00 

Arcilla (%)   2.88   9.13 27.96 0.99  25.08 

pH   6.64   7.43   8.40 0.042    1.76 

Conductividad eléctrica (dS m-1)   1.54 14.61 26.70 0.862  25.16 
Materia orgánica (%)   0.78   1.919   3.54 0.149     2.76 

Respiración (mg C-CO2 kg-1 día-1)   5.512 37.602 117.2 3.15 111.76 

*E.E.= error estándar.      

 
De acuerdo con el análisis de varianza (Tabla 2), no se detectó diferencia significativa para las 
variables de densidad aparente, porosidad, arcilla y pH en los tres factores de variación incluidos 
que fueron los sitios, ecosistema y sitio dentro de ecosistema (p > 0.05). El porcentaje de arena y 
limo variaron significativamente (p < 0.05) entre sitios y ecosistemas, pero no entre sitios dentro 
de cada ecosistema. La salinidad de los suelos analizada mediante la conductividad eléctrica (CE) 
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presentó diferencia altamente significativamente (p < 0.01) para las fuentes de variación de Sitios 
dentro de ecosistemas, es decir que la CE del suelo en cada Sitio fue diferente tanto en el 
ecosistema cultivo como sin cultivar y el urbano. El contenido de materia orgánica fue diferente 
significativamente entre Sitios dentro de cada ecosistema, mientras que la respiración de suelo 
medida como flujo de C-CO2 presentó diferencias significativas entre ecosistemas y sitios dentro 
de cada una de estos. 
 
 

Tabla 2. Niveles de significancia observado (valor p) en el análisis de varianza para los factores analizados de los 
parámetros de suelo. 

Table 2. Observed level of significance (p value) in the analysis of variance for factors analyzed for soil parameters. 
 Factor de variación 

Parámetro Sitio Ecosistema Ecosistema (Sitio) 
Densidad aparente  0.532¶ 0.346 0.244 
Porosidad 0.533 0.347 0.242 
Arena   0.041*   0.048* 0.910 
Limo    0.007** 0.081 0.809 
Arcilla 0.758 0.441 0.980 
pH 0.758 0.441 0.980 
C.E. 0.232   0.029*     0.001** 
Materia orgánica 0.548 0.480   0.012* 
Respiración 0.258   0.020*     0.001** 
¶ valor p; *, **, significativo al 0.05 y 0.01; C.E.= conductividad eléctrica 

 
 
El análisis de comparación múltiple de promedios permitió detectar efectos significativos para la 
mayoría de las variables, excepto los casos de densidad aparente y espacio poroso del suelo (Tabla 
3). Los porcentajes de arena fueron mayores significativamente (p < 0.05) en los ecosistemas 
agrícola y de agostadero, mientras que en el parque urbano fue inferior en 28.14% comparado 
con el suelo de agostadero. La alcalinidad de los suelos fue mayor significativamente con 0.64 
unidades en el suelo urbano, aunque los tres se ubican entre medianamente alcalino en promedio 
(SEMARNAT-2000). La concentración de sales solubles en promedio fue fuertemente salina en 
los ecosistemas agrícola y agostadero, y moderadamente salino en el suelo urbano, de tal manera 
que el suelo agrícola fue mayor en 5.74 y 16.7 dS m-1 comparado a los suelos de agostadero y 
urbano. Los niveles de materia orgánica pueden clasificarse de bajos a medios, y resulto mayor 
significativamente (p < 0.05) en el suelo urbano al superar con 0.42 % al suelo más bajo que fue 
el de agostadero. Las tasas de respiración del suelo fueron significativamente mayores en el suelo 
urbano, seguido del agrícola y en menor cantidad el suelo de agostadero.  
 
 

Tabla 3. Comparación de promedios entre ecosistemas para los parámetros de suelo. 
Table 3. Average comparison between ecosystems for soil parameters. 

 Ecosistema 
Parámetro Cultivado Agrícola Sin cultivar agostadero Parque Urbano 
Densidad ap. (g cm-3)      1.294±0.06a¶       1.378±0.05a     1.302±0.03a 

Porosidad (%) 51.18±2.35a 48.02±2.0a 50.85±1.32a 
Arena (%) 74.64±3.79a   82.75±3.27a 54.61±2.13b 
Limo (%) 19.71±4.10a   13.80±3.32a 33.47±2.06b 
Arcilla (%)   5.65±0.84b      3.45±0.14ab 11.91±1.20a 
pH  7.26±0.06b    7.36±0.03b   7.90±0.08a 
C.E. (dS m-1) 20.35±0.77a  14.61±1.27b   3.63±0.39c 
Materia orgánica (%)     1.748±0.13c      1.512±0.16b     1.934±0.16a 
Respiración (mg C-CO2 kg-1 día-1) 27.07±1.08b  16.11±1.11c 72.75±1.09a 
¶ error estándar; promedios con letras iguales no son diferentes significativamente, Tukey (p=0.05). 
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Las diferencias de emisión de C-CO2 fue de 45.6 y 56.6 mg C-CO2 kg-1 día-1 entre el urbano 
comparado con el suelo agrícola y de agostadero, que corresponde 63% y 78%, respectivamente, 
mientras que el agrícola supero en 10.9 mg C-CO2 kg-1 día-1 al suelo del agostadero que 
corresponde a un incremento de 40%. La emisión de CO2 como producto de la actividad 
microbiana en los suelos resulto diferente significativamente (p < 0.05) entre los sitios estudiados 
(Figura 3).     
  

 
Figura 3. Respiración de suelo (C-CO2) en cinco sitios muestreados de tres ecosistemas en zonas áridas del norte del 
Estado de Chihuahua. Barras con letras iguales no son diferentes significativamente (p < 0.05). 
Figure 3. Soil respiration (C-CO2) in five sampled sites for three ecosystems in arid zones of north Chihuahua state. 
Bars with the same letter are not significantly different (p < 0.05). 

  
 
Al encontrar tendencias entre las variables edáficas y las tasas de respiración de suelo 
(transformadas a ln) se decidió realizar análisis de regresión lineal múltiple (selección de 
variables hacia adelante) para encontrar una ecuación que explique la respiración en los suelos 
del presente estudio. El análisis permitió generar solo un modelo significativo (p < 0.01), que fue 
una correlación logarítmica significativa entre la respiración del suelo y el contenido de arena 
para los tres ecosistemas (Figura 4). La asociación de estas variables indica que por cada 1% de 
arena, la tasa de respiración disminuye en 0.04 ln (mg C-CO2 kg-1 día-1) con un coeficiente de 
correlación de 74.5%. Las otras correlaciones mostraron tendencias lineales de aumento en la 
respiración al incrementarse el porcentaje de limo, arcilla, pH y materia orgánica tal como 
coincide con los promedios de la Tabla 3.  
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Figura 4. Correlación entre las tasas de respiración de suelo (ln mg C-CO2) y el porcentaje de arena al incluir los tres 
ecosistemas (agrícola, agostadero y urbano). 
Figure 4. Correlation between soil respiration rates (ln mg C-CO2), and sand percentage by including the three 
ecosystems (agriculture, rangeland, and urban). 

  
 
Al observar las tendencias de cada correlación se encontró que, para el contenido de materia 
orgánica, la función inversa (1/x) es la que mejor explica los valores de respiración en ln (mg C-
CO2 kg-1 día-1) tal como se muestra en la Figura 5. Los aumentos estimados de respiración del 
suelo con el citado modelo son de 2.15, 1.291, 1.136 y 1.08 mg C-CO2   kg-1 día-1 para 1, 2, 3 ,4 
y 5 % de contenido de materia orgánica del suelo, respectivamente, es decir, aunque la pendiente 
aumenta, la tendencia es cada vez menos pronunciada de las emisiones de C-CO2 para los tres 
ecosistemas estudiados. Las bandas de los intervalos de confianza en la Figura 5 indican que la 
tasa de respiración mínima (L.I.) estimada a un 95% de confianza es de 1.17 a 2.72 que equivalen 
a 3.22 y 15.25 mg C-CO2   kg-1 día-1, mientras que el intervalo superior (L.S) muestra tasas de 
3.74 a 5.24, es decir, 42.16 a 190.27 mg C-CO2   kg-1 día-1 con la función inversa (1/x).  

 
Figura 5. Correlación entre las tasas de respiración de suelo (ln mg C-CO2) y el porcentaje de materia orgánica para 
los tres ecosistemas. Obs=datos observados, Pred=datos pronosticados, L.S.=límite superior del intervalo de confianza, 
y L.I.=límite inferior del intervalo de confianza. 
Figure 5. Correlation between soil respiration rates (ln mg C-CO2), and organic matter percentage for the three 
ecosystems. Obs=observed data, Pred=predicted data, L.S.=upper limit of confidence interval, L.I.=lower limit of 
confidence interval. 
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DISCUSIÓN 
 
Las propiedades físicas del suelo como la textura, densidad aparente y la porosidad se encuentran 
muy relacionadas, ya que en suelos de texturas pesadas como los arenosos la retención de 
humedad es muy baja, la cantidad de espacio poroso es menor y la densidad aparente es mayor, 
por el contrario en suelos donde predominan las partículas más pequeñas como el limo y arcilla 
existe mayor retención de agua y las densidades son menores en rangos de 1 a 1.3 g cm-3 
(SEMARNAT, 2000; Ortiz, 2010; Brady, 2017). En el presente estudio al encontrar alta 
variabilidad de estos parámetros físicos principalmente arena y limo que variaron 
significativamente, lo cual es evidente y en gran parte son explicados por la naturaleza de los 
suelos, ya que en los ecosistemas cultivado agrícola y sin cultivar de agostadero del grupo de 
suelo Gypsisol, suelos franco-arenosos con alto contenido de sulfato de calcio, que se localizan 
adyacentes a los del grupo Arenosol por los extensos médanos arenosos de Samalayuca. La 
clasificación de los suelos en las áreas cultivadas agrícolas y sin cultivar de agostadero 
corresponden al grupo Gypsisol que se caracterizan por la acumulación significativa de yeso 
(sulfato de calcio), ya que debido a alta evaporación ocurre la precipitación del yeso a partir de 
aguas subterráneas o superficiales (INEGI, 2017).  El suelo del parque urbano corresponde al 
grupo Calcisoles (del latín calx, cal), tienen acumulación significativa de material calcáreo 
(carbonato cálcico), ricos en bases, están muy extendidos en ambientes semiáridos (FAO, 2016; 
INEGI, 2017). Este suelo ubicado junto al Río Bravo frontera con los Estados Unidos se formó 
por depósitos aluviales y eólicos de material meteorizado, con un horizonte subsuperficial 
Cámbico o Árgico, por sus cambios en contenidos de arcilla. A nivel clasificación de Serie, este 
suelo del parque urbano se clasificó como Serie Juárez y representa el parque principal de ciudad 
Juárez de 107 ha (CIEPS, 1970). Por otra parte, el suelo del parque urbano de grupo Calcisol 
predominaron las texturas franco, aunque con variabilidad por su formación aluvial del Río Bravo 
(CIEPS, 1970; INEGI, 2017), ya que al estar ubicado en la zona fronteriza México-USA, este 
suelo Calcisol de la Serie Juárez coincide con el tipo Harkey-Glendale reportado por el Soil 
Survey de El Paso County (USDA, 1971) clasificado como suelo calcáreo con perfil superficial 
estratificado con texturas franco-limoso a franco-arenoso con arenas finas en las primeras 12 
pulgadas de profundidad y en lo general predomina la textura franca. También lo describen con 
suelos de alta fertilidad, capacidad de humedad disponible y permeabilidad moderada.  
Con respecto a las propiedades químicas del suelo, el pH fue de neutro a medianamente alcalino 
(6.6 a 8.4) con variabilidad no significativa encontrado en los tres ecosistemas, aunque 
ligeramente mayor en el suelo del parque urbano. Estos niveles de alcalinidad indican que 
disminuye la disponibilidad de ciertos nutrientes como Mn, Fe, B, Cu y Zn, mientras que P se 
afecta solo en el rango de 8.0 a 8.5 (Havlin, et al., 1999; Castellanos, et al., 2000). Tanto la 
variabilidad significativa como la mayor concentración de sales solubles encontrada en los suelos 
de uso agrícola y agostadero es explicada tanto por los factores de formación como por el riego 
con agua de pozos salinos que predominan en el norte del estado de Chihuahua, ya que por 
ejemplo valores encontrados en estudio equivalen entre 1 000 y 17 000 mg kg-1 de sales solubles 
en los suelos, por ello predominan las plantas halófitas y cultivos agrícolas con tolerancia a sales 
como algodón y sorgo, entre otros (Castellanos, et al., 2000). El contenido de materia orgánica 
en los suelos es de importancia, ya que se asocia con la liberación de N y P, entre otros nutrientes 
como Fe, Mn, Cu y Zn por la acción quelatante, también es fuente de ácidos húmicos y fúlvicos 
que participan en la fisicoquímica del suelo y la fisiología de las plantas (Brady &Weil, 2017). 
En el presente estudio no se encontraron diferencias significativas y predominaron niveles bajos 
de materia orgánica, lo cual es reportado para los grupos de suelo en zonas semiáridas, lo que se 
asocia a bajas tasas de mineralización de N (Flores-Márgez et al., 2010).  El suelo urbano presento 
la mayor cantidad de materia orgánica significativamente, lo cual es explicado por la aportación 
de materia orgánica en parques y jardines, así como por los materiales sólidos y líquidos que 
dispersan las personas durante las actividades recreativas.  
Las tasas de respiración microbiana mostraron una diferencia significativa entre ecosistemas y 
muestras dentro de los ecosistemas (p < 0.05), donde el suelo del parque urbano presentó la mayor 
respiración al superar en 62% al suelo cultivado agrícola y 78% al sin cultivar de agostadero. Al 
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comparar los valores de emisión de C-CO2 del presente estudio con las referencias se puede 
apreciar que, para el rango observado en los tres ecosistemas, 16 a 72 mg C-CO₂ kg-1 día-1, estas 
tasas de respiración están cercanas a lo reportado por (Gutiérrez et al., 2022) con 24.2 mg C-CO₂ 
kg-1 día-1, pero más altos que lo indicado por (Campuzano et al., 2025) con 12.5 mg C-CO₂ kg-1 
día-1. Mientras que lo encontrado en el presente estudio para suelo de parque urbano supera el 
doble la tasa de respiración que, en suelo cultivado agrícola, lo cual puede explicarse tanto por 
las propiedades de los suelos incluidos los niveles de materia orgánica y partículas minerales, 
manejo, entre otros (Lai et al., 2012; Li et al., 2024), así como cuando se aplican materiales 
orgánicos como estiércol, compostas, o bien reciben actividades de labranza (Ortiz, 2010; 
Salgado & Núñez, 2010 ;Brady & Weil, 2017 ).  
El parque urbano con grupo de suelo Calcisol, mientras que en agrícola y agostadero fue grupo 
Gypsisol con altos niveles de salinidad. Esto apoya en que la respiración del suelo en regiones 
áridas y semiáridas puede variar considerablemente debido a las condiciones ambientales, el 
grupo de suelo y manejo de estos, por ello la importancia de su cuantificación y relación con 
variables edáficas. Un estudio más reciente del área fronteriza México-USA que cubre el parque 
urbano incluido en este estudio, pero en la otra sección que pertenece al lado americano 
(Ganjegunte et al., 2017) en salinidad encontraron valores de 1 a 43 dS m-1, atribuido al riego con 
agua salina, mientras que en el presente estudio fue menor que es explicado por el riego con agua 
residual tratada baja en sales solubles  (García et al., 2020),  lo cual no afecta el crecimiento del 
pasto Cynodon dactilon L. que prevalece en el área. Por ejemplo, la incorporación de compostas 
en el suelo puede alterar de manera significativa algunas propiedades físicas y químicas como las 
nutrimentales (Kranz et al., 2020). Estos resultados coinciden con estudios del ciclo del N en 
suelos de parques urbanos (Zalacáin et al., 2019; Lal, 2017), donde los niveles altos de materia 
orgánica, nitratos extractables, tasas de desnitrificación, entre otros, han sido afectados por las 
aplicaciones de fertilizantes, riegos y escorrentía por las lluvias. También el rango observado de 
tasas de emisión de C-CO2 en el presente estudio coincide con la respiración del suelo 
cuantificada como C del CO2 reportado en valores de 0.1 a 38.4 y 1.51 a 4.87 g C cm-2 día-1 
equivalente aproximadamente a 0.77 y 295 mg C kg-1 día-1 y 11.6 a 37.5 mg C kg-1 día-1 para 
suelos agrícolas y de agostadero, respectivamente Cueva et al., 2016) mientras que Li et al., 
(2024)  indican entre 1 a 6 µmol C-CO2 m-2 s-1, es decir, 7.98 a 47.89 mg C-CO2 kg

-1 día-1. Dado 
que la densidad aparente está estrechamente relacionada con la textura de los suelos (Brady 
&Weil, 2017), en este estudio se aprecia que al aumentar la densidad ocurre una reducción en la 
respiración del suelo. Generalmente, al aumentar el contenido de arena se presenta un aumento 
en la densidad aparente, lo cual es de importancia en suelos de zonas áridas donde pueden 
presentarse estas clases texturales pesadas (Castellanos et al., 2000).  
Las tasas de respiración del suelo reportadas en múltiples estudios que fueron realizados en suelos 
áridos y semiáridos, donde ha existido una amplia variabilidad y refleja las diferencias en 
condiciones ambientales, técnicas de medición y manejo del suelo (Gutiérrez et al., 2022). La 
comparación de estas tasas muestra que a pesar de que la respiración del suelo en regiones áridas 
y semiáridas puede variar ampliamente. Las correlaciones entre parámetros fisicoquímicos de 
suelo y las tasas de respiración de suelo permiten apreciar como la actividad microbiana es 
función de las condiciones ambientales. Por ejemplo, la correlación negativa y significativa 
observada entre el porcentaje de arena y la emisión de C-CO2, es explicada por la baja retención 
de humedad y menor espacio poroso, lo cual reduce la actividad de los microorganismos (Brady 
& Weil, 2017). Por el contrario, los aumentos de tasas de respiración fueron cuando el porcentaje 
de limo y arcilla, así como el pH aumentaron, aunque no significativamente. Además de las 
diferencias en tasas de respiración entre los suelos de los ecosistemas estudiados, una correlación 
de suma importancia generada fue entre el contenido de materia orgánica y la tasa de respiración, 
donde se establecen aumentos significativos conforme aumenta de 1 a 5% el contenido orgánico 
en los suelos con una función inversa, ya que la tasa de respiración se incrementa no lineal, y a 
la vez va disminuyendo gradualmente conforme el contenido de materia orgánica aumenta. Esta 
información contribuye al conocimiento de los efectos de parámetros del suelo con la actividad 
microbiana reflejada por la tasa de respiración para ecosistemas de zonas áridas del norte de 
México y en general al impacto del cambio climático global. 
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 CONCLUSIONES 
 
Las tasas de respiración del suelo resultaron diferentes significativamente entre los ecosistemas 
evaluados, de tal forma que las cantidades menores de emisión de C-CO2 en el suelo sin cultivar  
dedicado al agostadero, se relacionó principalmente con menor contenido de materia orgánica y 
textura arenosa, seguido en magnitud de respiración por el suelo de cultivo agrícola que se 
encuentran ubicados en el mismo grupo de suelo (Gypsisol) pero con mayor salinidad, mientras 
que el suelo de parque urbano (Calcisol) con menor salinidad y mayor cantidad de materia 
orgánica duplico la tasa de respiración de los suelos anteriores. Correlaciones significativas se 
encontraron entre el contenido de materia orgánica y arena con la tasa de respiración, donde se 
observaron aumentos significativos al aumentar el contenido orgánico en los suelos mediante 
función inversa, ya que la tasa de respiración se incrementa con esa tendencia y la pendiente 
disminuye gradualmente. Estos cambios en la respiración del suelo para los ecosistemas 
estudiados son importantes por sus implicaciones de los flujos de emisión de CO2 a la atmósfera.  
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